ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 18, No. 1 , 2025
P. 55-66, Bibliography 29, Engl.
UDC:: [615.454.1:577.112.6]+[616-08-031.84:616-001.4]
DOI: https://doi.org/10.15407/biotech18.01.055
Full text: (PDF, in English)
PRODUCTION AND in vitro EVALUATION OF RECOMBINANT HUMAN RHHB-EGF FOR WOUND HEALING AND TARGETED THERAPY
I. Vovk1, A. Didan1, D. Zhukova1, L. Dronko2, A. Rebriev1, A. Rybalko1, E. Legach3, O. Gorbatiuk4, M. Usenko5, A. Skvarchynskyi6, T. Dovbymchuk6, A. Siromolot1, 6, S. Romaniuk1, D. Kolybo1
1Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
2National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
3Institute for Problems of Cryobiology and Cryomedicine
4Institute of Genetic and Regenerative Medicine, M.D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv
5Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv
6Educational and Scientific Center “Institute of Biology and Medicine” Taras Shevchenko National University of Kyiv, Ukraine
Aim. The goal of the study was to evaluate the biological activity of recombinant human heparinbinding EGF-like growth factor (rhHB-EGF) on mouse fibroblasts in vitro as a potential agent for promoting wound healing and tissue regeneration.
Methods. The study employed a scratch assay to evaluate the migration of mouse fibroblasts (L929 and NIH-3T3), the MTT test to assess cell proliferation, MALDI-TOF mass spectrometry for protein identification, and flow cytometry to determine cell viability.
Results. In the concentration range of 500-1000 ng/ml rhHB-EGF, no cytotoxic effect was recorded, but an increase in proliferation and/or metabolic activity, as well as migration of fibroblasts, was detected, with a maximum effect at 500 ng/ml rhHB-EGF in the cell incubation medium. A 30% overgrowth of the wound surface of fibroblasts was demonstrated in the scratch assay test under the influence of rhHB-EGF compared to the corresponding control.
Conclusions. rhHB-EGF at a concentration of 500 ng/ml can be used in preparations to stimulate wound healing and tissue regeneration due to its ability to stimulate proliferation/metabolic activity and migration of fibroblasts, as well as the lack of cytotoxicity. Further, in vivo studies are needed for a comprehensive evaluation of this possibility.
Key words: human heparin-binding EGF-like growth factor (rhHB-EGF), recombinant protein, cell culture, fibroblasts, proliferation, migration, cytotoxicity, wound healing.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2025
Referenes
- Werner, S., & Grose, R. (2003). Regulation of wound healing by growth factors and cytokines. Physiological Reviews, 83(3), 835–870. https://doi.org/10.1152/physrev.2003.83.3.835
- Mullin, J. A., Rahmani, E., Kiick, K. L., & Sullivan, M. O. (2023). Growth factors and growth factor gene therapies for treating chronic wounds. Bioengineering & Translational Medicine, 9(3), e10642. https://doi.org/10.1002/btm2.10642
- Shirakata, Y., Kimura, R., Nanba, D., Iwamoto, R., Tokumaru, S., Morimoto, C., Yokota, K., Nakamura, M., Sayama, K., Mekada, E., Higashiyama, S., & Hashimoto, K. (2005). Heparin-binding EGF-like growth factor accelerates keratinocyte migration and skin wound healing. Journal of Cell Science, 118(11), 2363–2370. https://doi.org/10.1242/jcs.02346
- Dao, D. T., Anez-Bustillos, L., Adam, R. M., Puder, M., & Bielenberg, D. R. (2018). Heparin-binding epidermal growth factor–like growth factor as a critical mediator of tissue repair and regeneration. American Journal of Pathology, 188(11), 2446–2456. https://doi.org/10.1016/j.ajpath.2018.07.016
- Holbro, T., & Hynes, N. E. (2004). ERBB receptors: directing key signaling networks throughout life. The Annual Review of Pharmacology and Toxicology, 44(1), 195–217. https://doi.org/10.1146/annurev.pharmtox.44.101802.121440
- Riese, D. J. 2nd, & Stern, D. F. (1998). Specificity within the EGF family/ErbB receptor family signaling network. Bioessays, 20(1), 41–48. https://doi.org/10.1002/(SICI)1521-1878(199801)20:1<41::AID-BIES7>3.0.CO;2-V
- Besner, G., Higashiyama, S., & Klagsbrun, M. (1990). Isolation and characterization of a macrophage-derived heparin-binding growth factor. Cell Regulation, 1(11), 811–819. https://doi.org/10.1091/mbc.1.11.811
- Jessmon, P., Leach, R. E., & Armant, D. R. (2009). Diverse functions of HBEGF during pregnancy. Molecular Reproduction and Development, 76(12), 1116–1127. https://doi.org/10.1002/mrd.21066
- Kim, Y. S., Yuan, J., Dewar, A., Borg, J., Threadgill, D. W., Sun, X., & Dey, S. K. (2023). An unanticipated discourse of HB-EGF with VANGL2 signaling during embryo implantation. Proceedings of the National Academy of Sciences, 120(20), https://doi.org/10.1073/pnas.2302937120
- Moradi, K., Mitew, S., Xing, Y. L., & Merson, T. D. (2024). HB-EGF and EGF infusion following CNS demyelination mitigates age-related decline in regeneration of oligodendrocytes from neural precursor cells originating in the ventricular-subventricular zone. bioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2024.02.26.582092
- Yang, Y., Xu, L., Atkins, C., Kuhlman, L., Zhao, J., Jeong, J., Wen, Y., Moreno, N., Kim, K. H., An, Y. A., Wang, F., Bynon, S., Villani, V., Gao, B., Brombacher, F., Harris, R., Eltzschig, H. K., Jacobsen, E., & Ju, C. (2024). Novel IL-4/HB-EGF-dependent crosstalk between eosinophils and macrophages controls liver regeneration after ischaemia and reperfusion injury. Gut, 73(9), 1543–1553. https://doi.org/10.1136/gutjnl-2024-332033
- Sierawska, O., & Sawczuk, M. (2023). Interaction between selected adipokines and musculoskeletal and cardiovascular systems: a review of current knowledge. International Journal of Molecular Sciences, 24(24), 17287. https://doi.org/10.3390/ijms242417287
- Iwamoto, R., & Mekada, E. (2000). Heparin-binding EGF-like growth factor: a juxtacrine growth factor. Cytokine & Growth Factor Reviews, 11(4), 335–344. https://doi.org/10.1016/s1359-6101(00)00013-7
- Gnosa, S. P., Puig Blasco, L, Piotrowski, K. B., Freiberg, M. L., Savickas, S., Madsen, D. H., Keller, U. A. D., Kronqvist, P., & Kveiborg, M. (2022). ADAM17-mediated EGFR ligand shedding directs macrophage-promoted cancer cell invasion. JCI Insight, 7(18), e155296. https://doi.org/10.1172/jci.insight.155296
- Giangreco, G., Rullan, A., Naito, Y., Biswas, D., Liu, Y., Hooper, S., Nenclares, P., Bhide, S., Cheang, M. C. U., Chakravarty, P., Hirata, E., Swanton, C., Melcher, A., Harrington, K., & Sahai, E. (2024). Cancer cell – fibroblast crosstalk via HB-EGF/EGFR/MEK signaling promotes expression of macrophage chemo-attractants in squamous cell carcinoma. iScience, 27(9), 110635. https://doi.org/10.1016/j.isci.2024.110635
- Dronko, L. M., Lutsenko, T. M., Korotkevych, N. V., Vovk, I. O., Zhukova, D. A., Romaniuk, S. I., Siromolot, A. A., Labyntsev, A. J., & Kolybo, D. V. (2024). Heparin-binding EGF-like growth factor: mechanisms of biological activity and potential therapeutic applications. The Ukrainian Biochemical Journal, 96(5), 5–20. https://doi.org/10.15407/ubj96.05.005
- Sanford, K. K., Earle, W. R., Likely, G. D. (1948). The growth in vitro of single isolated tissue cells. Journal of the National Cancer Institute, 9(3), 229–246.
- Aaronson, S. A., & Todaro, G. J. (1968). Development of 3T3‐like lines from Balb/c mouse embryo cultures: Transformation susceptibility to SV40. Journal of Cellular Physiology, 72(2), 141–148. https://doi.org/10.1002/jcp.1040720208
- McCarthy, S. A., Samuels, M. L., Pritchard, C. A., Abraham, J. A., & McMahon, M. (1995). Rapid induction of heparin-binding epidermal growth factor/diphtheria toxin receptor expression by Raf and Ras oncogenes. Genes & Development, 9(16), 1953–1964. https://doi.org/10.1101/gad.9.16.1953
- Knudsen, S. L. J., Mac, A. S. W., Henriksen, L., Van Deurs, B., & Grøvdal, L. M. (2014). EGFR signaling patterns are regulated by its different ligands. Growth Factors, 32(5), 155–163. https://doi.org/10.3109/08977194.2014.952410
- Korotkevich, N. V., Labyntsev, A. J., Kolibo, D. V., & Komisarenko, S. V. (2014). Obtaining and characterization of recombinant fluorescent derivatives of soluble human HB-EGF. Biotechnologia Acta, 7(2), 46–53. https://doi.org/10.15407/biotech7.02.046
- Meng, Q., Qi, X., Chao, Y., Chen, Q., Cheng, P., Yu, X., Kuai, M., Wu, J., Li, W., Zhang, Q., Li, Y., & Bian, H. (2020). IRS1/PI3K/AKT pathway signal involved in the regulation of glycolipid metabolic abnormalities by Mulberry (Morus alba L.) leaf extracts in 3T3-L1 adipocytes. Chinese Medicine, 15, 1. https://doi.org/10.1186/s13020-019-0281-6
- Johnson, N. R., & Wang, Y. (2015). Coacervate delivery of HB‐EGF accelerates healing of type 2 diabetic wounds. Wound Repair and Regeneration, 23(4), 591–600. https://doi.org/10.1111/wrr.12319
- Chelu, M., Moreno, J. M. C., Musuc, A. M., & Popa, M. (2024). Natural Regenerative hydrogels for wound healing. Gels, 10(9), 547. https://doi.org/10.3390/gels10090547
- Zheng, S., Wan, X., Kambey, P. A., Luo, Y., Hu, X., Liu, Y., Shan, J., Chen, Y., & Xiong, K. (2023). Therapeutic role of growth factors in treating diabetic wound. World Journal of Diabetes, 14(4), 364–395. https://doi.org/10.4239/wjd.v14.i4.364
- Smith, J., & Rai, V. (2024). Novel factors regulating proliferation, migration, and differentiation of fibroblasts, keratinocytes, and vascular smooth muscle cells during wound healing. Biomedicines, 12(9), 1939. https://doi.org/10.3390/biomedicines12091939
- Liang, C., Park, A. Y., & Guan, J. (2007). In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols, 2(2), 329–333. https://doi.org/10.1038/nprot.2007.30
- Shatursky, O. Y., Manoilov, K. Y., Gorbatiuk, O. B., Usenko, M. O., Zhukova, D. A., Vovk, A. I., Kobzar, O. L., Trikash, I. O., Borisova, T. A., Kolibo, D. V., & Komisarenko, S. V. (2021). The geometry of diphtheria toxoid CRM197 channel assessed by thiazolium salts and nonelectrolytes. Biophysical Journal, 120(12), 2577–2591. https://doi.org/10.1016/j.bpj.2021.04.028
- Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
- Frecklington, D. (2007). General method for MALDI-MS analysis of proteins and peptides. Cold Spring Harbor Protocols, 2007, pdb.prot4679. https://doi.org/10.1101/pdb.prot4679