ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 18, No. 1, 2025
P. 5-15 , Bibliography 37 , Engl.
UDC: 615.454.1
doi: https://doi.org/10.15407/biotech18.01.005
Full text: (PDF, in English)
COMPREHENSIVE REVIEW OF OINTMENT BASES: TYPES, PROPERTIES, AND APPLICATIONS
Kondratiuk A.S., Bilous V.L.
Palladin Institute of National Academy of Sciences of Ukraine, Kyiv
Aim. This article aims to comprehensively review and analyze various types of ointment bases, examining their physicochemical properties, advantages, and disadvantages. This review also seeks to explore the potential use of specific excipients in developing ointment bases with enhanced therapeutic properties and increased bioavailability of active pharmaceutical ingredients.
Methods. A broad search and study of existing literature on ointment bases, focusing on their classifications, properties, and applications. A comparative analysis of the two main classifications of ointment bases based on interaction with water (water-emulsion, hydrophobic, hydrophilic) and physicochemical properties (oleaginous, absorption, water-removable, water-soluble). Analysis of realworld examples to highlight the practical implications of selecting or developing appropriate ointment bases.
Results. The differences, advantages, and limitations of each ointment’s classification approach were highlighted. Detailed examination of the physicochemical properties of various ointment bases, such as consistency, stability, pH, and their impact on the pharmacokinetic and pharmacodynamic parameters was made. An assessment of how these properties influence the therapeutic efficacy and bioavailability of active pharmaceutical ingredients (APIs) was performed. Recommendations for future research and development based on the findings of the review were proposed.
Conclusions. This review examines various types of ointment bases, focusing on their physicochemical properties, advantages, and disadvantages while also exploring the potential use of specific excipients to enhance the therapeutic efficacy and bioavailability of active pharmaceutical ingredients (APIs). Understanding and selecting the appropriate ointment base is crucial for optimizing the therapeutic properties of medicinal products, and ongoing research in this area is essential for advancing pharmaceutical formulations.
Key words: ointment bases, pharmacokinetic properties, excipients, therapeutic efficacy, bioavailability, pharmaceutical formulations.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2025
References
REFERENCES
1. The State Pharmacopoeia of Ukraine. (2008). Ed. 1. Vol. 1. Kharkiv.
2. The State Pharmacopoeia of Ukraine. (2014). 2nd ed. Vol. 1. Kharkiv.
3. The State Pharmacopoeia of Ukraine. (2020). 2nd ed. Supplement 4. Kharkiv.
4. The State Pharmacopoeia of Ukraine. (2024). 2nd ed. Supplement 7, Vol. 2. Kharkiv.
5. Dmitrievskyi, D. I. (2024). Technology of Pharmaceutical Products in Industrial Production. Vinnytsia. 280 p.
6. Barnes, T. M., Mijaljica, D., Townley, J. P., Spada, F., Harrison, I. P. (2021). Vehicles for Drug Delivery and Cosmetic Moisturizers: Review and Comparison. Pharmaceutics, 13. https://doi.org/10.3390/pharmaceutics13122012
7. Pastore, M. N., Kalia, Y. N., Horstmann, M., Roberts, M. S. (2015). History of transdermal patches. British Journal of Pharmacology, 172, 2179–2209. https://doi.org/10.1111/bph.13059.
8. Brown, M. B., Turner, M., Lim, S. T. (2012). K.). New York.
10. De Villiers, M. M. (2009). Ointment Bases. In: A Practical Guide to Contemporary Pharmacy Practice. Chapter 23. Lippincott Williams &Wilkins. 277–290.
11. Bhaskar, R., Ola, M., Patil, P.H., Nawandar, K.S. (2016). A review on: ointment and ointment bases. World Journal of Pharmaceutical Research, 5(9), 335–345. URL: https://wjpr.net/abstract_file/5736
12. Lunter, D. J., Daniels, R. (2020). Semisolid Dosage. Pharmaceutics, 12(4), 315. https://doi.org/10.3390/pharmaceutics12040315.
13. Ogorzałek, M., Klimaszewska, E., Mirowski, M., Kulawik-Pióro, A., Tomasiuk, R. (2024). Natural or Synthetic Emollients? Physicochemical Properties of Body Oils in Relation to Selected Parameters of Epidermal Barrier Function. Applied Sciences, 14(7), 2783. https://doi.org/10.3390/app14072783
14. Kulkarni, V. S., Shaw, Ch. (2016). Essential Chemistry for formulators of semisolid and liquid dosages. Elsevier Inc. 256 p. https://doi.org/10.1016/C2013-0-18871-X.
15. Chang, R. K., Raw, A., Lionberger, R., Yu, L. (2013). Generic development of topical dermatologic products: formulation development, process development, and testing of topical dermatologic products. The AAPS journal, 15(1), 41–52. https://doi.org/10.1208/s12248-012-9411-0
16. Pushkarova, Y. M., Onufrovych, R. I., Verevka, S. V. (2024). Enzymatic detoxification of wounds: three generations of drugs. International scientific journal «Grail of Science», 35, 288–292. https://doi.org/10.36074/grail-of-science.19.01.2024.089.
17. Madaghiele, M., Demitri, C., Sannino, A., Ambrosio, L.(2014). Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burn Trauma, 2, 153–161. https://doi.org/10.4103/2321-3868.143616.
18 Ji, Y., Li, Y.-M., Seo, J. G., Jang, T.-S., Know les, J. C., Song, S. H., Lee, J.-H. (2021). Biological Potential of Polyethylene Glycol (PEG)-Functionalized Graphene Quantum Dots in In Vitro Neural Stem/Progenitor Cells. Nanomaterials, 11(6), 1446. https://doi.org/10.3390/nano11061446.
19. Mansoor, K. J., Kaabi, S. A. G. (2024). Topical Polyethylene Glycol-Phage Ointment as a Therapy to Treat Burn-Wound Infection Using Mice Model. Al-Mustansiriyah Journal of Science, 35(2), 83–95. https://doi.org/10.23851/mjs.v35i2.1477.
20. Rowe, R. C., Sheskey, P. J., Quinn, M. E. (2009). Handbook of Pharmaceutical Excipients. London. 517–518.
21. Beg, S., Al Robaian, M., Rahman, M., Sarim, Imam S., Alruwaili, N., Kumar, Panda, S. (2020). Pharmaceutical Drug Product Development and Process Optimization: Effective Use of Quality by Design. Apple Academic Press. 382 p. https://doi.org/10.1201/9780367821678.
22. Kadajji, V. G., Betageri, G. V. (2011). Water Soluble Polymers for Pharmaceutical Applications. Polymers, 3, 1972–2009. https://doi.org/10.3390/polym3041972.
23. Danby, S. G., Draelos, Z. D., Stein Gold, L. F., Cha, A., Vlahos, B., Aikman, L., Sanders, P., Wu-Linhares, D., Cork, M. J. (2022).Vehicles for atopic dermatitis therapies: more than just a placebo. The Journal of dermatological treatment, 33(2), 685–698. https://doi.org/10.1080/09546634.2020.1789050
24. Man, Y., Liu, C. (2022). Review of Ointment Formulations in Modern Pharmaceutics. Scientific Journal of Technology. 4(5), 72–76. https://doi.org/10.54691/sjt.v4i5.762
25. DeVilliers, M. M. (2009). Surfactants and emulsifying agents. In: A Practical Guide to Contemporary Pharmacy Practice. (Ed. Thompson J. E.). Philadelphia, PA.
26. Hong, I. K., Kim, S. I., Lee, S. B. (2018). Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. Journal of Industrial and Engineering Chemistry, 67, 123–131. https://doi.org/10.1016/j.jiec.2018.06.022
27. Haque, T., Talukder, M. M. U. (2018). Chemical enhancer: A simplistic way to modulate barrier function of the stratum corneum. Advanced pharmaceutical bulletin, 8(2), 169–179. https://doi.org/10.15171/apb.2018.021
28. Maru, A. D., Lahoti, S. R. (2019). Formulation and evaluation of ointment containing sunflower wax. Asian Journal of Pharmaceutical and Clinical Research, 12(8), 115–120. https://doi.org/10.22159/ajpcr.2019.v12i18.33199.
29. Sumi, N., Chitra, K. C. (2019). Fullerene C60 nanomaterial induced oxidative imbalance in gonads of the freshwater fish. Aquatic Toxicology, 210, 196–206. https://doi.org/10.1016/j.aquatox.2019.03.003.
30. Ngan, C. L., Basri, M., Tripathy, M., Abedi Karjiban, R., Abdul-Malek, E. (2015). Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging. European journal of pharmaceutical sciences., 70, 22–28. https://doi.org/10.1016/j.ejps.2015.01.006.
31. Zhen, M., Xu, Y., Wang, C., Bai, C. (2024). Fullerene-Based Immunoregulatory Nanomaterials for Immunotherapy of Tumor and Immune-Related Inflammatory Diseases. Advanced Functional Materials, 34, 2409319. https://doi.org/10.1002/adfm.202409319.
32. Stroppel, L., Schultz-Fademrecht, T., Cebulla, M., Blech, M., Marhofer, R.J., Selzer, P.M., Garidel, P. (2023). Antimicrobial preservatives for protein and peptide formulations: An overview. Pharmaceutics, 15, 563. https://doi.org/10.3390/pharmaceutics15020563.
33. Lynn, L., Scholes, R. C., Kim, J. H., Wilson-Welder, J. H., Orts, W. J., Hart-Cooper, W. M. (2024). Antimicrobial, preservative, and hazard assessments from eight chemical classes. ACS Omega, 9, 17869–17877. https://doi.org/10.1021/acsomega.3c08672.
34. Bodin-Thomazo, N., Malloggi, F., Pantoustier, N., Perrin, P., Guenoun, P., Rosilio, V. (2022). Formation and stabilization of multiple w/o/w emulsions encapsulating catechin, by mechanical and microfluidic methods using a single pH-sensitive copolymer: Effect of copolymer/drug interaction. International journal of pharmaceutics, 622, 121871. https://doi.org/10.1016/j.ijpharm.2022.121871.
35. Roberts, M. S., Cheruvu, H. S., Mangion, S. E., Alinaghi, A., Benson, H. A. E., Mohammed, Y.,
Holmes, A., ..., Grice, J. E. (2021). Topical drug delivery: History, percutaneous absorption, and product development. Advanced drug delivery reviews, 177, 113929. https://doi.org/10.1016/j.addr.2021.113929.
36. Torres, A., Rego, L., Martins, M. S., Ferreira, M. S., Cruz, M. T., Sousa, E., Almeida, I. F. (2023). How to Promote Skin Repair? In-Depth Look at Pharmaceutical and Cosmetic Strategies. Pharmaceuticals, 16(4), 573. https://doi.org/10.3390/ph16040573.
37. CVM GFI #38. Guideline for effectiveness evaluation of topical/otic animal drugs. FDA-2021-D-0625. 1984.