ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 17, No. 6, 2024
P. 56-66, Bibliography 28, Engl.
UDC:
doi: https://doi.org/10.15407/biotech17.06.056
Full text: (PDF, in English)
GROWTH AND YIELD RESPONSES OF SOYBEAN (Glycine max L.) TO ZINC OXIDE (ZnO) NANOPARTICLES FOLIAR APPLICATION
Fayomi Omotola Michael1*, Olasan Joseph Olalekan2, Aguoru Celestine Uzoma 2, Terhemba Mamnenge Sarah 2
1 Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi. Nigeria.
2 Department of Botany, Joseph Sarwuan Tarka University, Makurdi. Nigeria
Aim. This study was purposed to investigate the effects of zinc oxide nanoparticles (ZnO NPs) on the growth and yield performance of two soybean (Glycine max L.) varieties, TGX1904-6F and TGX1951-3F, under controlled experimental conditions.
Methods. Zinc oxide nanoparticles were synthesized and characterized following standard protocols, and their effects were evaluated across five treatment levels (20, 40, 60, 80, and 100 ppm) in a completely randomized design with five replicates. Growth parameters, including plant height, leaf morphology, stem diameter, and branch number, were assessed alongside phenological and yield traits such as days to flowering, flower production, pod metrics, and seed weights.
The results revealed significant improvements in plant growth and yield metrics at intermediate ZnO NP concentrations, with enhancements observed in plant height, branch number, pod weight, and seed yield. Specifically, 60 ppm ZnO NP treatment resulted in the highest branch production, while 40 and 80 ppm treatments significantly promoted floral and pod development. Conversely, higher concentrations (100 ppm) exhibited inhibitory effects on plant height and leaf morphology, suggesting potential toxicity at elevated ZnO NP levels. Statistical analyses, including one-way ANOVA and Pearson’s correlation, confirmed significant treatment effects (P ≤ 0.05) on growth and yield parameters, highlighting the critical role of dose optimization.
Conclusions. The findings underscore the potential of ZnO NPs as a novel agricultural supplement to enhance soybean productivity while emphasizing the need for balanced application to mitigate toxicity risks. This study contributes valuable insights into sustainable farming practices, leveraging nanotechnology to optimize crop performance and address global food security challenges.
Key words: Zinc oxide nanoparticles, Soybean, Glycine max, Growth, Yield
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2024
References
1. Pagano M.C, Miransari M. The importance of soybean production worldwide. ResearchGate, December 2016. DOI: 10.1016/B978-0-12-801536-0.00001-3
2. Mishra R, Tripathi M.K., Sikarwar R.S., Singh Y., Tripathi N. Soybean (Glycine max L. Merrill): A Multipurpose Legume Shaping Our World. Plant Cell Biotechno.l Mol. Biol. 2024, 25(3–4):17–37. DOI: 10.56557/PCBMB/2024/v25i3-48643
3. Liu K. Chemistry and Nutritional Value of Soybean Components. Soybeans. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1763-4_2
4. Francis D.V., Abdalla A.K., Mahakham W., Sarmah A.K., Ahmed Z.F.R. Interaction of plants and metal nanoparticles: Exploring its molecular mechanisms for sustainable agriculture and crop improvement. Environ Int. 2024, Aug:190: 108859. https://doi.org/10.1016/j.envint.2024.108859
5. Lin D, Xing B. Phytotoxicity of nanoparticles : Inhibition of seed germination and root growth. Environ Pollut. 2007, 150: 243–50. https://doi.org/10.1016/j.envpol.2007.01.016
6. Li S., Liu X., Fa-yuan W., Miao Y. Effects of ZnO Nanoparticles, ZnSO ₄ and Arbuscular Mycorrhizal Fungus on the Growth of Maize. Environ Sci. 2015, 36(12): 291–7.
7. Wang X.P., Li Q.Q., Pei Z.M., Wang S.C. Effects of zinc oxide nanoparticles on the growth , photosynthetic traits , and antioxidative enzymes in tomato plants. Biol Plant. 2018;62:801–8.
8. Priyanka N, Venkatachalam P. Biofabricated zinc oxide nanoparticles coated with phycomolecules as novel micronutrient catalysts for stimulating plant growth of cotton. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016;7(4):045018. DOI: 10.1088/2043-6262/7/4/045018
9. Buono D. Del, Michele A.Di., Costantino F., Trevisan M., Lucini L. Biogenic ZnO Nanoparticles Synthesized Using a Novel Plant Extract : Application to Enhance Physiological and Biochemical Traits in Maize. Nanomaterials. 2021, 11(5): 1270; https://doi.org/10.3390/nano11051270
10. Xu J., Luo X., Wang Y., Feng Y. Evaluation of zinc oxide nanoparticles on lettuce ( Lactuca sativa L .) growth and soil bacterial community. Environ. Sci. Pollut. Res. 2018, 25: 6026–6035. doi: 10.1007/s11356-017-0953-7.
11. Emamverdian A., Hasanuzzaman M., Liu G. Zinc Oxide Nanoparticles Improve Pleioblastus pygmaeus Plant Tolerance to Arsenic and Mercury by Stimulating Antioxidant Defense and Reducing the Metal Accumulation and Translocation. Front. Plant Sci. 2022, 13: 841501. https://doi.org/10.3389/fpls.2022.841501
12. Rizwan M., Ali S., Ali B., Adrees M., Arshad M., Hussain A., Rehman M. Z.U., Wari A.A. Chemosphere Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019, 214: 269–77. DOI: 10.1016/j.chemosphere.2018.09.120
13. Hussain A, Ali S, Rizwan M, Zia M, Rizwan M, Imran M, Chatha S.A.S., Nazir R.. Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut. 2018, 242: 1518–26.: https://doi.org/10.1016/j.envpol.2018.08.036
14. Javed R, Usman M, Yücesan B, Zia M, Gürel E. Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol. Biochem. 2017;110:94–9. doi: 10.1016/j.plaphy.2016.05.032
15. Peter Onuche, Adah Victoria, Ibobee Aondona Michael. Daily air temperature variation in Makurdi metropolis using analysis of variance model. Int. J. Sci. Res. Arch. 2023, 9(2): 191–200. DOI: https://doi.org/10.30574/ijsra.2023.9.2.0448
16. Tyowua B., Agbelusi E., Dera B. Evaluation of Vegetation Types and Utilization in Wildlife Park of the University Of Agriculture Makurdi, Nigeria. Greener J. Agric. Sci. 2013;3(1):001–5. DOI: http://dx.doi.org/10.15580/GJAS
17. Fayomi O.M., Olasan J.O., Aguoru C.U., Anjorin T.S., Sule A.M. Effect of biosynthesized ZnO nanoparticles derived from jatropha tajonensis on the yield of bambara groundnut ( Vigna subterranean L .). African J. Agric. Allied. Sci.. 2024;4(1):192–214. doi:
18. Bhat J.A., Faizan M, Bhat M.A., Huang F., Yu D., Ahmad A., Bajguz A., Ahmad P.. Defense interplay of the zinc-oxide nanoparticles and melatonin in alleviating the arsenic stress in soybean (Glycine max L.). Chemosphere. 2022, 288(P2): 132471. https://doi.org/10.1016/j.chemosphere.2021.132471
19. Yang G., Yuan H., Ji H., Liu H., Zhang Y., Wang G., Chen L., Guo Z.. Effect of ZnO nanoparticles on the productivity, Zn biofortification, and nutritional quality of rice in a life cycle study. Plant Physiol. Biochem. 2021, 163(March): 87–94. doi: 10.1016/j.plaphy.2021.03.053
20. Hashemi S, Asrar Z, Pourseyedi S, Nadernejad N. Investigation of ZnO nanoparticles on proline, anthocyanin contents and photosynthetic pigments and lipid peroxidation in the soybean. IET Nanobiotechnology. 2019, 13(1): 66–70. doi: 10.1049/iet-nbt.2018.5212
21. Fatemi H., Zaghdoud C., Nortes P.A., Carvajal M., del Carmen Martínez-Ballesta M. Differential Aquaporin Response to Distinct Effects of Two Zn Concentrations after Foliar Application in Pak Choi (Brassica rapa L.) Plants. Agronomy. 2020. 10(3): 1–18. https://doi.org/10.3390/agronomy10030450
22. Salehi H, De Diego N, Chehregani Rad A, Benjamin JJ, Trevisan M, Lucini L. Exogenous application of ZnO nanoparticles and ZnSO4 distinctly influence the metabolic response in Phaseolus vulgaris L. Sci. Total Environ. 2021, 778: 146331. doi: 10.1016/j.scitotenv.2021.146331
23. Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR. Responses of soybean (Glycine max [L.] Merr.) to zinc oxide nanoparticles: Understanding changes in root system architecture, zinc tissue partitioning and soil characteristics. Sci Total Environ. 2022, 835(April). DOI: 10.1016/j.scitotenv.2022.155348
24. Komatsu S., Murata K., Yakeishi S, Shimada K, Yamaguchi H, Hitachi K, Tsuchida K., Obi Rumina, Akita S., Fukuda R. . Morphological and Proteomic Analyses of Soybean Seedling Interaction Mechanism Affected by Fiber Crosslinked with Zinc-Oxide Nanoparticles. Int J Mol Sci. 2022;23(13). https://doi.org/10.3390/ijms23137415
25. Hernandez-Viezcas J.A., Castillo-Michel H, Andrews JC, Cotte M, Rico C, Peralta-Videa JR, Ge Y., , Priester J.H. Holden P.A., Holden J.A. In situ synchrotron X-ray fluorescence mapping and speciation of CeO 2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano. 2013, 7(2): 1415–23. doi: 10.1021/nn305196q
26. Oghenerume P, Eduok S, Ita B, John O, Basssy I. Impact of Zinc Oxide Nanoparticles Amended Organic Manure on Arachis hypogaea Growth Response and Rhizosphere Bacterial Community. Int. J. Plant Soil. Sci. 2020, 32(5): 24–35. doi:10.9734/ijpss/2020/v32i530279
27. Ahmad P, Alyemeni M.N., Al-Huqail A.A., Alqahtani M.A., Wijaya L., Ashraf M., Kaya C., Bajguz A. Zinc oxide nanoparticles application alleviates arsenic (As) toxicity in soybean plants by restricting the uptake of as and modulating key biochemical attributes, antioxidant enzymes, ascorbate-glutathione cycle and glyoxalase system. Plants . 2020, 9(7): 1–18. doi: 10.3390/plants9070825
28. Mirakhorli T, Ardebili ZO, Ladan-Moghadam A, Danaee E. Bulk and nanoparticles of zinc oxide exerted their beneficial effects by conferring modifications in transcription factors, histone deacetylase, carbon and nitrogen assimilation, antioxidant biomarkers, and secondary metabolism in soybean. PLoS One. 2021, 16(9 September): 1–16. doi: 10.1371/journal.pone.0256905
29. Zeeshan M, Hu YX, Iqbal A, Salam A, Liu YX, Muhammad I, Ahmad Shakeel, Khan Aamir Hamid, Hale Brett, Wu Hai Yan, Zhou Xun Bo . Amelioration of AsV toxicity by concurrent application of ZnO-NPs and Se-NPs is associated with differential regulation of photosynthetic indexes, antioxidant pool and osmolytes content in soybean seedling. Ecotoxicol. Environ. Saf. 2021, 225(April): 112738. https://doi.org/10.1016/j.ecoenv.2021.112738
30. Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR. Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci Total Environ. 2020 Oct 10:738:140240. doi: 10.1016/j.scitotenv.2020.140240
31. Yoon SJ, Kwak J Il, Lee WM, Holden PA, An YJ. Zinc oxide nanoparticles delay soybean development: A standard soil microcosm study. Ecotoxicol Environ Saf [Internet]. 2014;100(1):131–7. Available from: http://dx.doi.org/10.1016/j.ecoenv.2013.10.014
32. Veena M, Puthur JT. Seed nutripriming with zinc is an apt tool to alleviate malnutrition. Environ. Geochem. Health. 2022;44(8): 2355–73. https://doi.org/10.1007/s10653-021-01054-2
33. Wang Z, Wang S, Ma T, Liang Y, Huo Z, Yang F. Synthesis of Zinc Oxide Nanoparticles and Their Applications in Enhancing Plant Stress Resistance: A Review. Agronomy. 2023;13(12) 3060. https://doi.org/10.3390/agronomy13123060.
34. Sharifi RS. Application of biofertilizers and zinc increases yield, nodulation and unsaturated fatty acids of soybean. Zemdirbyste. 2016:103(3): 251–258. doi: 10.13080/z-a.2016.103.032
35. Sharifi S, Blanquer S, Kooten T van, Grijpma D. Biodegradable nanocomposite hydrogel structures with enhanced mechanical properties prepared by photo-crosslinking solutions of poly (trimethylene carbonate). Acta Biomater. 2012 Dec;8(12): 4233-43. doi: 10.1016/j.actbio.2012.09.014