ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 17, No. 5, 2024
P. 14-23, Bibliography 73, Engl.
UDC: 615.37:616.89-008.444
doi: https://doi.org/10.15407/biotech17.05.014
Full text: (PDF, in English)
INNOVATIVE MICROBIAL-BASED THERAPIES FOR POST-TRAUMATIC STRESS DISORDER
І.M. LYPEY, L.S. YUSKO, N.V. BOYKO
Uzhhorod National University, Uzhhorod, Ukraine
Aim. To investigate and systematize the literature data regarding the potential of novel biopreparations based on microorganisms as an innovative approach to the treatment of post-traumatic stress disorder (PTSD) through their impact on the microbiome and nervous system.
Material and Methods. Structural-logical analysis and bibliosemantic analysis were used in this study. The research materials comprised general scientific works and international health care protocols in Ukraine. The search for articles and other scientific papers published in English and Ukrainian was conducted online using electronic databases such as Web of Science, Scopus, PubMed, and Google Scholar.
Results. The relationship between microorganisms and the central nervous system through the so-called “enteric-cerebral axis” has been analyzed and systematized, revealing new opportunities for treating mental disorders, including PTSD. Studies indicate that the gut microbiome plays a crucial role in regulating the gut-brain axis, influencing the neuroendocrine system, immune response, and behavioral outcomes.
Conclusions. The use of probiotics and prebiotics has demonstrated a positive effect in reducing symptoms of anxiety and depression, which are critical components of PTSD. However, further clinical studies are required to confirm the efficacy and safety of these biological treatments in the management of PTSD.
Key words: biologics, probiotics, prebiotics, microbiome, gut-brain axis, mental disorders, posttraumatic stress disorder.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2024
References
- Williams J.B.W., First M. Diagnostic and Statistical Manual of Mental Disorders. Encyclopedia of Social Work. https://doi.org/10.1093/acrefore/9780199975839.013.104
- Hudson P. Effective treatments for PTSD: practice guidelines from the International Society for Traumatic Stress Studies. British Journal of Guidance & Counselling. 2011, 39(2): 194–195. https://doi.org/10.1080/03069885.2010.550798
- Cryan, J.F., Dinan, T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience. 2012, 13(10): 701–712. https://doi.org/10.1038/nrn3346
- Foster J.A., Rinaman L., Cryan J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiology of Stress. 2017, 7: 124–136. https://doi.org/10.1016/j.ynstr.2017.03.001
- Champagne-Jorgensen K., McVey Neufeld K.-A. The Role of the Microbiota-Gut-Brain Axis in Neurodevelopment and Mental Health in Childhood and Adolescence. The Oxford Handbook of Developmental Cognitive Neuroscience. 2022. https://doi.org/10.1093/oxfordhb/9780198827474.013.34
- Gayathri D., Vasudha M., Prashantkumar C.S. Gut-Brain Axis: Probiotic Interactions and Implications for Human Mental Health. Microbiome-Gut-Brain Axis, 2022: 261–280. https://doi.org/10.1007/978-981-16-1626-6_11
- He Q., Wang W., Xu D., Yang Xiong, Tao C., You C., Ma L., Psychiatric Genomics Consortium Posttraumatic Stress Disorder Working Group. Potential causal association between gut microbiome and posttraumatic stress disorder. Transl Psychiatry. 2024, 14(1): 67. https://doi.org/10.1038/s41398-024-02765-7
- Reber S.O., Siebler P.H., Donner N.C., LowryA. Immunization with a heat-killed preparation of the environmental bacterium mycobacterium vaccae promotes stress resilience in mice. Proc Natl Acad Sci USA. 2016, 113: E3130–9. https://doi.org/10.1073/pnas.1600324113
- Dinan T.G., Borre Y.E., Cryan J.F. Genomics of schizophrenia: time to consider the gut microbiome? Mol Psychiatry. 2014, 19: 1252–7. https://doi.org/10.1038/mp.2014.93
- Sarkar A., Harty S., Lehto S.M., Moeller H., Dinan T.G., Dunbar R.I M, Cryan J.F, Burnet P.W J.. The microbiome in psychology and cognitive neuroscience. Trends in Cognitive Sciences. 2018, 22(7): 611-636. https://doi.org/10.1038/mp.2014.93
- Kowalski K., Mulak A. "Brain-gut-microbiota axis in Alzheimer's disease." Journal of Neurogastroenterology and Motility. 2019, 25(1): 48-60. https://doi.org/10.1038/mp.2014.93
- Bercik P., Denou E., Collins J., Jackson W., Lu J, Jury, Deng Y., Blennerhassett P., Macri J., McCoy K.D., Verdu E.F., Collins S.M. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011, 141(24): 599–609. https://doi.org/10.1053/j.gastro.2011.04.052
- Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Gastroenterol. 2015, 28: 203e209
- Eskandarzadeh S., Effatpanah M., Khosravi-Darani K., Askari R , Hosseini A.F., Reisian M., Jazayeri S. Efficacy of a multispecies probiotic as adjunctive therapy in generalized anxiety disorder: A double blind, randomized, placebo-controlled trial. Nutr Neurosci. 2021, 24: 102–8. https://doi.org/1080/1028415X.2019.1598669
- Hemmings S.M.J., Malan-Muller S., van den Heuvel L.L. DemmittA., Stanislawski M.A., Smith D.J., Bohr A.D., Stamper C.E, Hyde E.R., Morton J.T/, Marotz C.A., Siebler P.H., Braspenning M., Criekinge W.N., Hoisington A.J., Brenner L.A., Postolache T.T., McQueen M.B., Krauter K.S., Knight R., Seedat S., Lowry C.A. The microbiome in posttraumatic stress disorder and trauma-exposed controls: An exploratory study. Psychosom Med. 2017, 79(8): 936–946. https://doi.org/10.1097/PSY.0000000000000512
- Stefan K.L., Kim M.V., Iwasaki A., Kasper D.L. Commensal Microbiota Modulation of Natural Resistance to Virus Infection. Cell. 2020, 183(5): 1312-1324.e10. https://doi.org/10.1016/j.cell.2020.10.047
- Valdes A.M., Walter J., Segal E., Spector T.D. Role of the gut microbiota in nutrition and health. British Medical Journal. 2018, 361: k2179
- Loupy K.M., Lowry C.A. Posttraumatic Stress Disorder and the Gut Microbiome. The Oxford Handbook of the Microbiome-Gut-Brain Axis. 2020. https://doi.org/10.1093/oxfordhb/9780190931544.013.10
- Neufeld-Cohen A., Kelly P.A.T., Paul E.D., CarterN., Skinner E, OlvermanH.J., Vaughan J.M., Issler O., Kuperman Y., Lowry C.A., Vale W.W., Seckl J.R., Chen A., Jamieson P.M. Chronic activation of corticotropin-releasing factor type 2 receptors reveals a key role for 5-HT1A receptor responsiveness in mediating behavioral and serotonergic responses to stressful challenge. Biological Psychiatry. 2012, 72(6): 437–447. https://doi.org/10.1016/j.biopsych.2012.05.005
- Hoban A.E., Stilling R.M., Moloney, Shanahan F., Dinan T.G., Clarke G., Cryan G.F. The microbiome regulates amygdala-dependent fear recall. Molecular Psychiatry. 2018, 23(5): 1134–1144. https://doi.org/10.1038/mp.2017.100
- Chu C., Murdock M.H., Jing D., Hyung W.T., Chung H, Kressel A.M., Tsaava T., Addorisio M.E., Putzel G.G., Zhou L, Bessman N.J., Yang R, Moriyama S, Parkhurst C.N., Li A., Meyer H.C., Teng F., Chavan S.S., Tracey K.J., Regev A., Schroeder F.C., Lee F.S., Liston C., Artis D. The microbiota regulate neuronal function and fear extinction learning. Nature. 2019, 574: 543–548. https://doi.org/1038/s41586-019-1644-y
- Eckburg P.B., Bik E.M., Bernstein C.N., Purdom , Dethlefsen L., Sargent M. , Gill S.R., Nelson K.E., Relman D.A. Diversity of the human intestinal microbial flora. Science. 2005, 308(5728): 1635–1638. https://doi.org/10.1126/science.1110591
- Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. 2016, 165(6): 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041
- Ramírez-Pérez O., Cruz-Ramón V., Chinchilla-López P., Méndez-Sánchez N. The role of the gut microbiota in bile acid metabolism. Annals of Hepatology. 2017, 16: 15–20. https://doi.org/5604/01.3001.0010.5494
- Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Research. 2018, 1693: 128–133. https://doi.org/1016/j.brainres.2018.03.015
- Zijlmans M.A.C., Korpela K., Riksen-Walraven J.M., de VosM., de Weerth C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology. 2015, 53: 233–245. https://doi.org/10.1016/j.psyneuen.2015.01.006
- De Palma G., Blennerhassett P., Lu J., Deng Y,ParkJ., Green W., Denou E. Silva M.A., Santacruz A., Sanz Y., Surette M.J., Verdu E.F., Collins S.M., Bercik P.. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nature Communications. 2015, 6(1): 7735 https://doi.org/10.1038/ncomms8735
- Tursich M., Neufeld R.W.J., Frewen P.A., Harricharan , Kibler J.I., Rhind S.G., Lanius R.A.. Association of trauma exposure with proinflammatory activity: A transdiagnostic meta-analysis. Translational Psychiatry. 2014, 4(7): e413–e413. https://doi.org/10.1038/tp.2014.56
- O’Donovan A., Cohen B.E., Seal K.H., Bertenthal,Margaretten M., Nishimi K., Neylan T.C. Elevated risk for autoimmune disorders in Iraq and Afghanistan veterans with posttraumatic stress disorder. Biological Psychiatry. 2015, 77(4): 365–374. https://doi.org/10.1016/j.biopsych.2014.06.015
- Song H., Fang F., Tomasson G. Association of stress-related disorders with subsequent autoimmune disease. JAMA. 2018, 319(23): 2388–2400. https://doi.org/10.1038/mp.2014.93
- Wong M.-L., Inserra A., Lewis M. D. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Molecular Psychiatry. 2016, 21(6): 797–805 https://doi.org/doi:10.1001/jama.2018.7028
- Eraly S.A., Nievergelt C.M., Maihofer A.X., Barkauskas .AQ., Biswas, Agorastos A., O'Connor D.T., Baker D.G. Assessment of plasma C-reactive protein as a biomarker of posttraumatic stress disorder risk. JAMA Psychiatry. 2014, 71(4): 423–431 https://doi.org/10.1001/jamapsychiatry.2013.4374
- Rosen R.L., Levy-Carrick N., Reibman J., Xu N, Shao Y, Liu, Ferri L., Kazeros L., Caplan-Shaw C.E., Pradhan D.R., Marmor M., Galatzer-Levy I.R.. Elevated C-reactive protein and posttraumatic stress pathology among survivors of the 9/11 World Trade Center attacks. Journal of Psychiatric Research. 2017, 89: 14–21. https://doi.org/10.1016/j.jpsychires.2017.01.007
- Kabouridis P.S., Lasrado R., McCallum , Chng S.H., Snippert H.S., Clevers H., Pettersson S., Pachnis V. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron. 2015, 85(2): 289–295. https://doi.org/10.1016/j.neuron.2014.12.037
- Rowland I., Gibson G., Heinken A., Scott, Swann J., Thiele I., Tuohy K.. Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition, 2018, 57(1): 1–24. https://doi.org/10.1007/s00394-017-1445-8
- Kaelberer M.M., Buchanan K.L., Klein M.E., Barth B.B., Montoya M.M., Shen X., BohórquezV. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018, 361(6408): eaat5236. https://doi.org/10.1126/science.aat5236
- Latorre R., Sternini C., De Giorgio R., Greenwood-Van Meerveld B. Enteroendocrine cells: A review of their role in brain-gut communication. Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society. 2016, 28(5): 620–630. https://doi.org/1111/nmo.12754
- Kolmeder C.A., Salojärvi J., Ritari J., de Been, Raes G., Falony G., Vieira-Silva S Faecal metaproteomic analysis reveals a personalized and stable functional microbiome and limited effects of a probiotic intervention in adults. PLoS One. 2016, 11(4): e0153294. https://doi.org/10.1371/journal.pone.0153294
- Tanca A., Abbondio M., Palomba A., Fraumene, Manghina V., Cucca F., Fiorillo F., Uzzau S. Potential and active functions in the gut microbiota of a healthy human cohort. Microbiome. 2017, 5(1): 79 https://doi.org/10.1186/s40168-017-0293-3
- Shajib M.S., Chauhan U., Adeeb S., Chetty,Armstrong D., Halder S.L.S., Marshall J.K., Khan/ W.I. Characterization of serotonin signaling components in patients with inflammatory bowel disease. Journal of the Canadian Association of Gastroenterology. 2018, 2(3): 132–140. https://doi.org/10.1093/jcag/gwy039
- Xu Y., Zhou H., Zhu Q. The impact of microbiota-gut-brain axis on diabetic cognition impairment. Frontiers in Aging Neuroscience. 2017, 9: 106. https://doi.org/3389/fnagi.2017.00106
- Lloyd-Price J., Abu-Ali G. Huttenhower C. The healthy human microbiome. Genome Med. 2016, 8: https://doi.org/10.1186/s13073-016-0307-y
- Leclercq S., Forsythe P., Bienenstock J. Posttraumatic stress disorder: Does the gut microbiome hold the key? The Canadian Journal of Psychiatry. 2016, 61(4): 204–213. https://doi.org/10.1177/0706743716635535
- Watson P. PTSD as a Public Mental Health Priority. Curr Psychiatry Rep. 2019, 21(7): https://doi.org/10.1007/s11920-019-1032-1
- Silva S., van den Heuvel L.L., Raes J. et al. Exploring the relationship between the gut microbiome and mental health outcomes in a posttraumatic stress disorder cohort relative to trauma-exposed controls. Eur Neuropsychopharmacol. 2022, 56: 24-38. https://doi.org/10.1016/j.euroneuro.2021.11.009
- Ait-Belgnaoui A., Durand H., Cartier C, Chaumaz, Eutamene H., Ferrier L., Houdeau E., Fioramonti J., Bueno L., Theodorou V. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012, 37(11): 1885–1895. https://doi.org/10.1016/j.psyneuen.2012.03.024
- Moya-Pérez A., Perez-Villalba A., Benítez-Páez A., Campillo I., Sanz Y. Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice. Brain, Behavior, and Immunity. 2017, 65: 43–56. https://doi.org/1016/j.bbi.2017.05.011
- Sefik E., Geva-Zatorsky N., Oh S., Konnikova, Zemmour D., McGuire A.M., Burzyn D., Ortiz-Lopez. A., Lobera M., Yang J., Ghosh S., Earl A., Snapper S.B., Kasper D., Mathis D., Benoist C. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science. 2015, 349(6251): 993–997. https://doi.org/10.1126/science.aaa9420
- Jonkers D., Penders J., Masclee A., Pierik M. Probiotics in the management of inflammatory bowel disease. Drugs. 2012, 72(6): 803–823. https://doi.org/2165/11632710-000000000-00000
- Saez-Lara M.J., Gomez-Llorente C., Plaza-Diaz J., Gil The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: A systematic review of randomized human clinical trials. BioMed Research International. 2015: 1–15. https://doi.org/10.1155/2015/505878
- Wasilewski A., Zielińska M., Storr M., Fichna J. Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflammatory Bowel Diseases. 2015, 21(7): 1674–1682. https://doi.org/1097/MIB.0000000000000364
- Wang J., Ji H., Wang S., Liu H., Zhang, Zhang. D., Wang Y. Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Frontiers in Microbiology. 2018, 9: 1953. https://doi.org/10.3389/fmicb.2018.01953
- Zeng, Chi H. Metabolic control of regulatory T cell development and function. Trends in Immunology. 2015, 36(1): 3–12. . https://doi.org/10.1016/j.it.2014.08.003
- Arpaia, Campbell C., Fan X., Dikiy S., van der Veeken J., de Roos P., Liu H., Cross J.R., Pfeffer K., Coffer P.J., Rudensky A.Y. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013, 504(7480): 451–455. https://doi.org/10.1038/nature12726
- Singh N., Gurav A., Sivaprakasam S., Brady, Padia R., Shi H., Thangaraju. M., Prasad P.D., Manicassamy S., Munn D.H., Lee J.F., Offermanns S., Ganapathy V. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014, 40(1): 128–139 https://doi.org/10.1016/j.immuni.2013.12.007
- Matt S.M., Allen J.M., Lawson M.A, Mailing. L.J., WoodsA., Johnson R.W. Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice. Frontiers in Immunology. 2018, 9: 1832. https://doi.org/10.3389/fimmu.2018.01832
- Mazidi M., Rezaie P., Ferns G. A., Vatanparast H. Impact of probiotic administration on serum C-reactive protein concentrations: Systematic review and meta-analysis of randomized control trials. Nutrients. 2017, 9(1): 20. https://doi.org/3390/nu9010020
- Davis L.M.G., Martínez I., Walter J., Goin, Hutkins R.W. Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS One. 2011, 6(9): e25200. https://doi.org/10.1371/journal.pone.0025200
- Elbendary A.A., Hessain A.M., El-Hariri M.D., Seida A.A., Moussa I.M., Mubarak A.S., Kabli S.A., Hemeg H.A., Jakee J.K.El. Isolation of antimicrobial producing Actinobacteria from soil samples. Saudi Journal of Biological Sciences. 2018, 25(1): 44–4. https://doi.org/1016/j.sjbs.2017.05.003
- Verma R., Lee C., Jeun E.-J., Yi J., Kim K.S., Ghosh A., Byun S., Lee C.G., Kang H.J., Kim G.C., Jun C.D., Jan G., Suh C.H., Jung. Y., Sprent J., Rudra D., De Castro C., Molinaro A., Surh C.D., Im S.H. Cell surface polysaccharides of Bifidobacterium bifidum induce the generation of Foxp3+ regulatory T cells. Science Immunology. 2018, 3(28): eaat6975 https://doi.org/10.1126/sciimmunol.aat6975
- Loupy K.M., Arnold M.R., Hassell J.E., Lieb M.V., Milton L.N., Cler K.E., Fox J.H., Siebler P.S., Schmidt D., Noronha S ISR., Day H.E.W. LowryA.. Evidence that preimmunization with a heat-killed preparation of Mycobacterium vaccae reduces corticotropin-releasing hormone mRNA expression in the extended amygdala in a fear-potentiated startle paradigm. Brain, Behavior, and Immunity. 2018, 77: 127–140. https://doi.org/10.1016/j.bbi.2018.12.015
- Fonken L.K., Frank M.G., D’Angelo H.M., Heinze J.D., Watkins L.R., Lowry C.A., Maier S.F.. Mycobacterium vaccae immunization protects aged rats from surgery-elicited neuroinflammation and cognitive dysfunction. Neurobiology of Aging. 2018, 71: 105–114. https://doi.org/1016/j.neurobiolaging.2018.07.012
- Frank M.G., Fonken L.K., Watkins L.R., MaierF., Lowry C.A. Could probiotics be used to mitigate neuroinflammation? ACS Chemical Neuroscience. 2019, 10(1): 13–15. https://doi.org/10.1021/acschemneuro.8b00386
- Zuany-Amorim C., Sawicka E., Manlius , Moine A.L., Brunet L.R.,Kemeny D.M., Bowen G., Rook G., Walker C. Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nature Medicine. 2002, 8(6): 625–629. https://doi.org/10.1038/nm0602-625
- Bharwani A., Mian M.F., Surette M.G., Bienenstock, Forsythe P.. Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress. BMC Medicine. 2017, 15(1): 7. https://doi.org/10.1186/s12916-016-0771-7
- Liang S., Wang T., Hu X., Luo, Li W.,Wu X., Duan T., Jin F. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience. 2015, 310: 561–577. https://doi.org/10.1016/j.neuroscience.2015.09.033
- Davis D.J., Doerr H.M., Grzelak A.K., Busi S.B., Jasarevic E., Ericsson A.C., Bryda E.C. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Scientific Reports. 2016, 6: 33726. https://doi.org/1038/srep33726
- Vital M., Howe A.C., Tiedje J.M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio. 2014, 5(2): e00889. https://doi.org/10.1128/mbio.00889-14
- Kazemi A., Noorbala A.A., Azam K., EskandariH.Djafarian K.. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clin Nutr. 2019, 38(2): 522-528. https://doi.org/10.1016/j.clnu.2018.04.010
- Pinto-Sanchez M.I., Hall G.B., Ghajar K., Bolino, Lau J.T., Martin F-P., Cominetti O., Welsh C., Rieder A., Traynor J., Gregory C., De Palma G., Pigrau M., Ford A.C., Macri J., Berger B., Bergonzelli J., Surette M.G., Collins S.M., Moayyedi P., Bercik P. Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients With Irritable Bowel Syndrome. Gastroenterology. 2017, 153(2): 448-459.e8. https://doi.org/10.1053/j.gastro.2017.05.003
- Brenner R.E., Heath P.J., Vogel D.L., Credé M. Two is more valid than one: Examining the factor structure of the Self-Compassion Scale (SCS). Journal of Counseling Psychology. 2017, 64(6): 696–707. https://doi.org/10.1037/cou0000211
- Fenster R.J., Lebois L.A.M., Ressler K.J., Suh J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci. 2018, 19(9): 535-551. https://doi.org/10.1038/s41583-018-0039-7
- Mayer E.A., Tillisch K., Gupta A. Gut/brain axis and the microbiota. Clin. Invest. 2015, 125(3): 926–38. https://doi.org/10.1172/JCI76304.