ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 17, No. 5, 2024
P. 33-44, Bibliography 65, Engl.
UDC: [582.284:577.151.54]: 664.292
doi: https://doi.org/10.15407/biotech17.05.033
Full text: (PDF, in English)
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
The study of basidiomycete growth on pectin-containing agar media and the synthesis of pectolytic enzymes is crucial for selecting promising strains.
Aim. The study was purposed to evaluate basidiomycetes’ growth dynamics and enzymatic activity from the Trametes genus in surface culture on agar media supplemented with pectin.
Methods. The radial growth rates of T. ochracea and T. versicolor strains were cultivated on peptone-yeast agar media with pectin (PPYA) at initial pH values of 5.0 and 7.0. Pectinase activity was determined by a semi-quantitative method using cetylmethylammonium bromide, and the pectinase activity index (PAI) was calculated.
Results and Discussion. Among T. ochracea strains cultivated on PPYA at pH 5.0, the highest growth rate was observed for strain 5302 (7.56 Ѓ} 0.41 mm/day). At pH 7.0, strain 1561 exhibited the highest growth rate (6.63 Ѓ} 0.29 mm/day), whereas strain 5300 showed the lowest growth rate at both pH values. For T. versicolor, strains 353, 1589, and 5095 exhibited the highest growth rates on PPYA at pH 5.0 (9.97 Ѓ} 0.44 mm/day), with strain 353 demonstrating the highest growth rate at pH 7.0 (11.67 Ѓ} 0.47 mm/day). The maximum PAI values among T. ochracea strains were observed in strains 1561 and 1570 (0.85-1.05), while for T. versicolor, strain 5094 demonstrated the highest PAI (1.07 Ѓ} 0.04). The results indicated that the growth rate on pectin-based media does not consistently correlate with the level of pectolytic enzyme synthesis. T. versicolor strains showed no clear correlation, whereas T. ochracea exhibited moderate correlations: a negative correlation on pH 5.0 media and a positive correlation on pH 7.0 media between pectinase activity and radial growth rate.
Conclusions. Among T. ochracea strains, 5302 showed the highest growth rate at pH 5.0, while strain 1561 had the highest at pH 7.0. Most T. versicolor strains, except strain 5161, had higher growth rates across both pH levels, with strains 353, 1689, and 5095 showing exceptionally high rates. Strain 5094 of T. versicolor exhibited the highest pectinase activity at pH 7.0. These findings highlight the potential for optimizing pH conditions to enhance the pectinase activity of Trametes strains.
Key words: macromycetes, Trametes, pectin, growth rate, pectolytic enzymes, enzymatic activity.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2024
References
- Rico X., Gullón B., Yáñez R. Environmentally friendly hydrothermal processing of melon by-products for the recovery of bioactive pectic-oligosaccharides. Foods. 2020, 9: https://doi.org/10.3390/foods9111702
- Shivamathi, C.S., Gunaseelan, S., Soosai, M.R., Vignesh, N.S., Varalakshmi, P., Kumar, R.S., Karthikumar, S., Kumar, R.V., Baskar, R., Rigby, S.P. & Syed, A. Process optimization and characterization of pectin derived from underexploited pineapple peel biowaste as a value-added product. Food Hydrocoll. 2022, 123: https://doi.org/10.1016/j.foodhyd.2021.107141
- Lara-Espinoza, C., Carvajal-Millán, E., Balandrán-Quintana, R., López-Franco, Y., & Rascón-Chu, A. Pectin and pectin-based composite materials: Beyond food texture. Molecules. 2018, 23: https://doi.org/10.3390/molecules23040942
- Belkheiri, A., Forouhar, A., Ursu, A.V., Dubessay, P., Pierre, G., Delattre, C., Djelveh, G., Abdelkafi, S., Hamdami, N., & Michaud, P. Extraction, characterization, and applications of pectins from plant by-products. Appl Sci. 2021, 11: https://doi.org/10.3390/app11146596
- Rehman H., Baloch A.H., Nawaz M.A. Pectinase: immobilization and applications. A review. Trends Pept Protein Sci. 2021, 6: 1–16. https://doi.org/10.22037/tpps.v6i.33871.
- Shrestha S., Rahman M.S., Qin W. New insights in pectinase production development and industrial applications. Appl Microbiol Biotechnol. 2021, 105: 9069–9087. https://doi.org/10.1007/s00253-021-11705-0
- Haile S., Masi C., Tafesse M. Isolation and characterization of pectinase-producing bacteria (Serratia marcescens) from avocado peel waste for juice clarification. BMC Microbiol. 2022, 22: https://doi.org/10.1186/s12866-022-02536-8
- Ahmed J., Thakur A., Goyal A. Emerging trends on the role of recombinant pectinolytic enzymes in industries: an overview. Biocatal Agric Biotechnol. 2021, 38: https://doi.org/10.1016/j.bcab.2021.102200
- Thakur P., Mukherjee G. Utilization of agro-waste in pectinase production and its industrial applications. 2021, p. 145–162. https://doi.org/10.1007/978-981-15-4439-2_7
- Suhaimi, H., Dailin, D.J., Malek, R.A., Hanapi, S.Z., Ambehabati, K.K., Keat, H.C., Prakasham, S., Elsayed, E.A., Misson, M., El Enshasy, H. Fungal pectinases: production and applications in food industries. 2021, p. 85–115. 10.1007/978-3-030-64406-2_8
- Gunjal A.B., Patil N.N., Shinde S.S. Pectinase in degradation of lignocellulosic wastes. Enzym Degrad Lignocellul Wastes. Cham: Springer International Publishing; 2020. p. 71–103. https://doi.org/10.1007/978-981-15-4439-2_7
- Haile S., Ayele A. Pectinase from microorganisms and its industrial applications. S. Rodriguez-Couto, editor. Sci World J. 2022: 1–15. https://doi.org/10.1155/2022/1881305
- Haldar S., Banerjee S. Enzyme technology for the degradation of lignocellulosic waste. Biotechnol Zero Waste. Wiley. p. 143–153. https://doi.org/10.1007/978-981-15-4439-2_7
- Mat Jalil M.T., Zakaria N.A., Salikin N.H., & Ibrahim, D. Assessment of cultivation parameters influencing pectinase production by Aspergillus niger LFP-1 in submerged fermentation. J Genet Eng Biotechnol. 2023, 21: https://doi.org/10.1186/s43141-023-00510-z
- Sittidilokratna C., Suthirawut S., Chitradon L., Punsuvon , & Siriacha P. Screening of pectinase producing bacteria and their efficiency in biopulping of paper mulberry bark. ScienceAsia. 2007, 33: 131. https://doi.org/10.2306/scienceasia1513-1874.2007.33.131
- Aaisha G.A., Barate D.L. Isolation and identification of pectinolytic bacteria from soil samples of Akola region, India. Int J Curr Microbiol Appl Sci. 2016, 5: 514–521. https://doi.org/10.20546/ijcmas.2016.501.051
- Kh A-E-AS, Attallah A.G., Abdel-Aziz N.M., & Khalil, B.E. Isolation, screening, and molecular identification of pectinase producers from fruits, vegetables, and soil samples. Egypt Pharm J. 2022, 21: 302–311. https://doi.org/10.4103/epj.epj_39_22
- El-Gendi H., Saleh A.K., Badierah R., Redwan E.M., El-Maradny Y.A., El-Fakharany E.M. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind’s Challenges. J Fungi. 2021, 8: 23. https://doi.org/10.3390/jof8010023.
- Nguyen H.T.K., Lee J., Park Y., Park H.J., Ahn S.K., Kim J.K., Kang D.-K., Kim M., Ahn C., Kim C. Comparative Analysis of Anticancer and Antibacterial Activities among Seven Trametes Species. Mycobiology. 2023, 51: 256–263. https://doi.org/10.1080/12298093.2023.2247218
- Klechak I.R., Bisko N.A., Poedynok N.L., Antonenko L.O. Patterns of growth of promising objects of biotechnology – basidiomycetes of the genus Coriolus in surface culture. Naukovi visti NTUU “KPI”. 2008, 6: 100–107 (In Ukrainian).
- Uber T.M., Backes E., Saute V.M.S., da Silva B.P., Corrêa R.C.G., Kato C.G., Seixas F.A.V., Bracht A., Peralta R.M. Enzymes from basidiomycetes—peculiar and efficient tools for biotechnology. Biotechnol Microb Enzym. Elsevier; 2023: 129–164. https://linkinghub.elsevier.com/retrieve/pii/B9780443190599000232
- Zubyk P., Klechak I. Cultural and Morphological Features of Trametes versicolor (Polyporaceae) Growth on Wood Hydrolyzes Containing Media. Innov Biosyst Bioeng. 2023, 7: 24–33. https://doi.org/10.20535/ibb.2023.7.1.274343
- Xavier-Santos S., Carvalho C.C., Bonfá M., Bonfá, M., Silva, R., Capelari, M., & Gomes, E. Screening for pectinolytic activity of wood-rotting basidiomycetes and characterization of the enzymes. Folia Microbiol (Praha). 2004, 49: 46–52. https://doi.org/10.1007/BF02931645
- Levin L., Forchiassin F. Culture conditions for the production of pectinolytic enzymes by the white‐rot fungus Trametes trogii on a laboratory scale. Acta Biotechnol. 1998, 18: 157–166. https://doi.org/10.1002/abio.370180213
- Sakamoto M., Shirane Y., Naribayashi I., Kimura, K., Morishita, N., Sakamoto, T., & Sakai, T. Purification and characterization of a rhamnogalacturonase with protopectinase activity from Trametes sanguinea. Eur J Biochem. 1994, 226: 285–291. https://doi.org/10.1111/j.1432-1033.1994.tb20052.x
- do Rosário Freixo M., Karmali A., Arteiro J.M. Production of polygalacturonase from Coriolus versicolor grown on tomato pomace and its chromatographic behaviour on immobilized metal chelates. J Ind Microbiol Biotechnol. 2008, 35: 475–484. https://doi.org/10.1007/s10295-008-0305-1
- Reetha S., Selvakumar G., Thamizhiniyan P., Ravimycin T., Bhuvaneswari G. Screening of Cellulase and Pectinase by Using Pseudomonas fluorescence and Bacillus subtilis. Int Lett Nat Sci. 2014, 13: 75–80. https://doi.org/10.18052/www.scipress.com/ILNS.13.75.
- Abdollahzadeh R., Pazhang M., Najavand S., Fallahzadeh-Mamaghani V., Amani-Ghadim A.R. Screening of pectinase-producing bacteria from farmlands and optimization of enzyme production from selected strain by RSM. Folia Microbiol (Praha). 2020, 65: 705–719. https://doi.org/10.1007/s12223-020-00776-7.
- Oumer O.J., Abate D. Screening and molecular identification of pectinase producing microbes from coffee pulp. Biomed Res Int. 2018: 1–7. https://doi.org/10.1155/2018/2961767
- Singh A., Kaur A., Dua A., Mahajan, R. An efficient and improved methodology for the screening of industrially valuable xylano-pectino-cellulolytic microbes. Enzyme Res. 2015: 1–7. https://doi.org/10.1155/2015/725281
- El-Sayed M.H., Elsehemy I.A.E. Paenibacillus strain NBR–10, a thermophilic soil-isolated bacterium with thermo-alkali stable pectinase activity. J Appl Environ Biol Sci. 2017, 7: 9–19.
- S., K. G. Screening and Isolation of Pectinase from Fruit and Vegetable Wastes and the Use of Orange Waste as a Substrate for Pectinase Production. Int Res J Biol Sci. 2013, 2: 34–39.
- C S., Upadhyaya J., Joshi D.R., Lekhak B., Kumar Chaudhary D., Raj Pant B., Raj Bajgai T., Dhital R., Khanal S., Koirala N., et al. Production, Characterization, and Industrial Application of Pectinase Enzyme Isolated from Fungal Strains. Fermentation. 2020, 6: 59. https://doi.org/10.3390/fermentation6020059.
- Jayani R.S., Shukla S.K., Gupta R. Screening of Bacterial Strains for Polygalacturonase Activity: Its Production by Bacillus sphaericus (MTCC 7542). Enzyme Res. 2010: 1–5. https://doi.org/10.4061/2010/306785.
- Umar M., Rehman A., Khan I., Hayat P., Hayat A., Rehman M.U., Shah T.A., Dawoud T.M., Hadrach S., Bourhia M. Screening and optimization of extracellular pectinase produced by Bacillus thuringiensis Open Chem. 2023, 21. https://doi.org/10.1515/chem-2022-0358.
- Phutela U., Dhuna V., Sandhu S., Chadha B.S. Pectinase and polygalacturonase production by a thermophilic Aspergillus fumigatus isolated from decomposing orange peels. Brazilian J Microbiol. 2005, https://doi.org/10.1590/S1517-83822005000100013.
- Usha D.K., Kanimozhi G., Panneerselvam A. Isolation and screening of pectin lyase producing fungi from soil sample of dead organic matters. World J Pharm Res. 2014, 3: 563–569.
- Gutiérrez-Soto G., Medina-González G.E., García-Zambrano E.A., Treviño-Ramírez J.E., Hernández-Luna C.E. Selection and Characterization of a Native Pycnoporus sanguineus Strain as a Lignocellulolytic Extract Producer from Submerged Cultures of Various Agroindustrial Wastes. BioResources. 2015: https://doi.org/10.15376/biores.10.2.3564-3576.
- Molitoris H.P. Methods for determination of enzymatic activities of marine fungi. Czech mycol. 2000, 52: 97–124. https://doi.org/10.33585/cmy.52201
- Bukhalo A., Dugan O.M., Maksymyuk M.R., Linovytska V.M. Enzymatic activity of the higher basidial fungus Grifola frondosa. Visnyk NAU. 2011, 2: 155–161. (In Ukrainian). https://doi.org/10.18372/2306-1472.47.29
- Bukhalo A., Dugan O.M., Maksymyuk M.R., Linovytska V.M. Enzymatic activity of a higher basidial fungus Schizophyllum commune. Visnyk NAU. 2012, 3: 154–159. (In Ukraiian). (In Ukrainian). https://doi.org/10.18372/2306-1472.52.2369
- Dzhigun L.P. Cultural features of wood-destroying fungus Polyporus squamosus (Huds.) Fr. (Basidiomycota). Botan. J. 2005, 65: 91–99.
- Chaudhari A., Dahale I., Pungle R., & Jadhav, M. Optimization of culture conditions and characterization of pectinase from isolated bacteria and application in juice clarification. J Adv Sci Res. 2024, 15: 36–41. https://doi.org/10.55218/JASR.2024150606
- Abdullah R., Jafer A., Nisar K., Kaleem, A., Iqtedar, M., Iftikhar, T., Saleem, F., Naz, S. Process optimization for pectinase production by locally isolated fungal strain using submerged fermentation. J Biosci. 2018, 34: 1025–1032. https://doi.org/10.14393/BJ-v34n1a2018-39947
- Dushyantha D.K., Jagadeesh K.S., Patil C.R., Nirmalnath J. Pectinase production from Aspergillus niger RBF96 by solid state fermentation using citrus peel. J Pure Appl Microbiol. 2014, 8: 1021–1030.
- Taskin E., Eltem R., da Silva E.S., de Souza V.B. Screening of Aspergillus strains isolated from vineyards for pectinase production. J Food Agric Environ. 2008, 6: 412–414.
- Bisko N., Lomberg M., Mykchaylova O., Mytropolska N. IBK Mushroom Culture Collection. The IBK Mushroom Culture Collection of the M.G. Kholodny Institute of Botany; 2022.
- Regeda L., Bisko N. The effect of initial pH on production mycelial biomass of Pholiota (Strophariaceae, Basidiomycota) species in liquid static culture. Int J Appl Biol Environ Sci. 2020, 2: 1–3. https://doi.org/10.5505/ijabes.2020.10820
- Bukhalo A.S. Higher edible basidiomycetes in pure culture. In: Dudka I.A., editor. Kyiv: Naukova Dumka; 1988. (In Ukrainian).
- Poveda G., Gil-Durán C., Vaca I., Levicán G., Chávez R. Cold-active pectinolytic activity produced by filamentous fungi associated with Antarctic marine sponges. Biol Res. 2018, 51: https://doi.org/10.1186/s40659-018-0177-4
- Sahu N., Merényi Z., Bálint B., Kiss, B., Sipos, G., Owens, R. A., Nagy, L. G. Hallmarks of basidiomycete soft- and white-rot in wood-decay ‒‒ omics data of two Armillaria Microorganisms. 2021, 9: 149. https://doi.org/10.3390/microorganisms9010149
- Harding S.A., Tsai C.-J. Cell wall pectins in tree growth and woody biomass utilization. 2019. p. 235–256. https://doi.org/10.1016/bs.abr.2018.11.008
- Shoily S.S., Fatema K., Dina R.B., Biswas, A., Haque, P., Rahman, M.M., Uddin, M.Z., & Sajib, A.A. The pectinolytic activity of Burkholderia cepacia and its application in the bioscouring of cotton knit fabric. J Genet Eng Biotechnol. 2023, 21: https://doi.org/10.1186/s43141-023-00596-5
- Reginatto C., Rossi C., Miglioranza B.G., dos Santos, M., Meneghel, L., da Silveira, M.M., & Malvessi, E. Pectinase production by Aspergillus niger LB-02-SF is influenced by the culture medium composition and the addition of the enzyme inducer after biomass growth. Process Biochem. 2017, 58: 1–8. https://doi.org/10.1016/j.procbio.2017.04.018
- Benoit I., Coutinho P.M., Schols H.A., Gerlach, J. P., Henrissat, B., & de Vries, R. P. Degradation of different pectins by fungi: correlations and contrasts between the pectinolytic enzyme sets identified in genomes and the growth on pectins of different origin. BMC Genomics. 2012, 13: https://doi.org/10.1186/1471-2164-13-321
- Fontana R.C., Silveira M.M. Influence of pectin, glucose, and pH on the production of endo- and exo-polygalacturonase by Aspergillus oryzae in liquid medium. Brazilian J Chem Eng. 2012, 29: 683–690. https://doi.org/10.1590/S0104-66322012000400001
- Lipson D.A. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front Microbiol. 2015, https://doi.org/10.3389/fmicb.2015.00615
- Molenaar D., van Berlo R., de Ridder D., Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol Syst Biol. 2009, https://doi.org/10.1038/msb.2009.82
- Baró‐Montel N., Vall‐llaura N., Usall J., Teixidó, N., Naranjo‐Ortíz, M. A., Gabaldón, T., & Torres, R. Pectin methyl esterases and rhamnogalacturonan hydrolases: weapons for successful Monilinia laxa infection in stone fruit? Plant Pathol. 2019, 68: 1381–1393. https://doi.org/10.1111/ppa.13039
- Wang Y., Barth D., Tamminen A., & Wiebe, M. G. Growth of marine fungi on polymeric substrates. BMC Biotechnol. 2016, 16: https://doi.org/10.1186/s12896-016-0233-5
- Amin F., Bhatti H.N., Bilal M., Asgher M. Multiple Parameter Optimizations for Enhanced Biosynthesis of Exo-polygalacturonase Enzyme and its Application in Fruit Juice Clarification. Int J Food Eng. 2017, https://doi.org/10.1515/ijfe-2016-0256.
- Ganbarov K.G., Kulieva N.A., Muradov P.Z. Biosynthesis of Pectinase by Fungi of the Genera Bjerkandera and Coriolus during Solid-Phase Fermentation. Appl Biochem Microbiol. 2001, 37: 593–595. https://doi.org/10.1023/A:1012303101102
- Saha M., Rana R.S., Adhikary B., & Mitra, S. Screening of bacterial strains for pectate lyase production and detection of optimal growth conditions for enhanced enzyme activity. J Appl Nat Sci. 2017, 9: 370–374. https://doi.org/10.31018/jans.v9i1.1198
- Tanaka Y., Suzuki T., Nakamura L., Nakamura, M., Ebihara, S., Kurokura, T., Iigo, M., Dohra, H., Habu, N., & Konno, N. A GH family 28 endo-polygalacturonase from the brown-rot fungus Fomitopsis palustris: Purification, gene cloning, enzymatic characterization and effects of oxalate. Int J Biol Macromol. 2019, 123: 108–116. https://doi.org/10.1016/j.ijbiomac.2018.11.004
- Davanso M., Atsakou A.E., Gattas E.A.L., de Paula, A. V. Assessment of pectinase-producing fungi isolated from soil and the use of orange waste as a substrate for pectinase production. J Basic Appl Pharm Sci. 2019, 40: