ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 17, No. 5 2024
P. 53-58, Bibliography 27, Engl.
UDC: 595.799:578(470)
doi: https://doi.org/10.15407/biotech17.05.053
Full text: (PDF, in English)
Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine
Aim. This study investigated viruses of the western honeybee (Apis mellifera) from the northern regions of Ukraine using polymerase chain reaction (PCR).
Methods. To identify honeybee viruses, oligonucleotide primers, which are specific to a gene fragment encoding the capsid protein and a fragment of the RNA-dependent RNA polymerase gene, were used. The reaction mixture contained 12.5 μL of master mix solution (DNA polymerase, dNTPs, and buffer), 1 μL of each primer (20 pmol/μL), 2 μL of cDNA, and water to a total volume of 25 μL. PCR products were visualized in a 2% agarose gel.
Results. In the Zhytomyr region in Apis mellifera was revealed for the first time the presence of four viruses representing different taxonomic groups, in particular Israeli Acute Paralysis Virus (IAPV), Sacbrood Virus (SBV), Deformed Wing Virus (DWV) and Chronic Bee Paralysis Virus (CBPV). Three of these viruses (SBV, DWV, and CBPV) were detected in the Kyiv region, while two (SBV and DWV) were identified in the Chernihiv region.
Conclusions. The obtained data indicate the widespread distribution of Apis mellifera honeybee viruses in the northern regions of Ukraine. The use of PCR to detect bee viruses will contribute to the development of effective methods for improving the health of bee colonies.
Key words: Apis mellifera, bee viruses, diagnosis, PCR .
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2024
References
1. Khalifa, S. A., Elshafiey, E. H., Shetaia, A. A., El-Wahed, A. A. A., Algethami, A. F., Musharraf, S. G. Overview of bee pollination and its economic value for crop production. Insects. 2021, 12(8): 688. https://doi.org/10.3390/insects12080688
2. Quintana, S., Brasesco, C., Negri, P., Marin, M., Pagnuco, I., Szawarski, N., Reynaldi, F.J., Larsen, A., Eguaras, M.,Maggi, M. Up-Regulated Pathways in Response to Deformed Wing Virus Infection in Apis mellifera (Hymenoptera: Apidae). Rev. Soc. Entomol. Argent. 2019. 78, P.1–11. https://doi.org/10.25085/rsea.780101
3. Ryabov Е., Fannon J., Moore J., Wood G., Evans D. The Iflaviruses Sacbrood virus and Deformed wing virus evoke different transcriptional responses in the honeybee which may facilitate their horizontal or vertical transmission. Peer J. 2016, 4:e1591; http://dx.doi.org/10.7717/peerj.1591
4. Lamas Z.S. and Evans J.D. Deadly triangle: honey bees, mites, and viruses. Front. Bee Sci. 2024, 2: 1418667. https://doi.org/10.3389/frbee.2024.1418667
5. Rudenko E.V. Alternative method of control of infections bees brood diseases. Apiacta. 2003, 18: 93‒97. (In Ukrainian).
6. Hristov P, Shumkova R, Palova N, Neov B. Factors associated with honey bee colony losses: a mini-review. Vet Sci. 2020, 7[4]: 166. https://doi.org/10.3390/vetsci7040166.
7. Grozinger C.M., Flenniken M.L. Bee viruses: ecology, pathogenicity, and impacts. Annu Rev Entomol. 2019, 64: 205–226. https://doi.org/10.1146/annurev-ento-011118-111942
8. Wei, R., Cao, L., Feng, Y., Chen, Y., Chen, G., Zheng, H. Sacbrood Virus: A Growing Threat to Honeybees and Wild Pollinators. Viruses. 2022, 14: 1871. https://doi.org/10.3390/v14091871
9. Li, N., Li, C., Hu, T., Li J., Zhou H., Ji J., Wu W.K., Holmes E.C., Shi W., Xu S. Bee paralysis virus, black queen cell virus and deformed wing virus in Carnolian honey bee (Apis mellifera carnica) queen rearing, Journal of Apicultural Research. 2020, 59(1), 53‒58, https://doi.org/10.1080/00218839.2019.1681115
10. Gisder S., Genersch E.Viruses of commercialized insect pollinators. Journal of Invertebrate Pathology. 2017, Volume 147, Pages 51-59. https://doi.org/10.1016/j.jip.2016.07.010
11. Tehel, A.; Brown, M.J.F.; Paxton, R.J. Impact of managed honey bee viruses on wild bees. Curr. Opin. Virol. 2016, 19, 16–22. https://doi.org/10.1016/j.coviro.2016.06.006
12. Schläppi D., Lattrell P., Yañez O., Chejanovsky N., Neumann P. Foodborne Transmission of Deformed Wing Virus to Ants [Myrmica rubra]. Insects. 2019, Nov7; 10(11):394. doi: 10.3390/insects10110394.
13. Schurr S., Tison A., Militano L., Cheviron N., Sircoulomb F., Rivière M. et al. Validation of quantitative real-time RT-PCR assays for the detection of six honeybee viruses, Journal of Virological Methods. 2019, Vol. 270, P. 70-78, https://doi.org/10.1016/j.jviromet.2019.04.020.
14. Žvokelj L., Bakonyi T., Korošec T., & Gregorc A. Appearance of acute bee paralysis virus, black queen cell virus and deformed wing virus in Carnolian honey bee (Apis mellifera carnica) queen rearing, Journal of Apicultural Research. 2020, 59:1, 53-58, DOI: 10.1080/00218839.2019.1681115
15. Gauthier L, Cornman S, Hartmann U, Cousserans F, Evans JD, de Miranda JR, Neumann P: The Apis mellifera filamentous virus genome. Viruses. 2015, 7: 3798‒3815. https://doi.org/10.3390/v7072798.
16. Levin S, Galbraith D, Sela N, Erez T, Grozinger C, Chejanovsky N: Presence of Apis rhabdovirus-1 in populations of pollinators and their parasites from two continents. Front Microbiol. 2017, 8: 2482. https://doi.org/10.3389/fmicb.2017.02482
17. Shybanov S., Kharina A., Stakhurska O., Snihur G., & Kompanets T. Detection of honey bee viruses on the territory of Ukraine. Agrofor International journal. 2017, 2(3), 140‒146. https://doi.org/10.7251/AGRENG1703140S
18. Maslii, I.G., Beliba, L.P., Desyatnikova, O.V., Rudova, N.G. Diagnosis of viral diseases of bees in Ukraine using PCR. Veterinary medicine. 2017, 103: 134–138.
19. Steinmann, N., Corona, M., Neumann, P., Dainat, B. Overwintering is associated with reduced expression of immune genes and higher susceptibility to virus infection in honey bees. PloS One. 2015, 10: e0129956. https://doi.org/10.1371/journal.pone.0129956
20. Chen Y.P., Siede R. Honey bee viruses. Adv Virus Res. 2007, 70: 33–80. https://doi.org/10.1186/s40168-022-01446-1
21. DeGrandi-Hofman G., Chen Y. Nutrition, immunity and viral infections in honey bees. Curr Opin Insect Sci. 2015, 10: 170–176. https://doi.org/10.1016/j.cois.2015.05.007
22. Wagoner, K., Spivak, M., Hefetz, A., Reams, T., Rueppell, O. Stockspecific chemical brood signals are induced by Varroa and Deformed Wing Virus, and elicit hygienic response in the honey bee. Sci. Rep. 2019, 9. https://doi.org/10.1093/jisesa/ieab064
23. Geffre, A. C., Gernat, T., Harwood, G. P., Jones, B. M., Gysi, D. M., Hamilton, A. R., Bonninп B.C., Toth A.L., Robinso G.E., Doleza A.G.. Honey bee virus causes context-dependent changes in host social behavior. Proc. Natl. Acad. Sci. United States America 2020, 117: 10406–10413. https://doi.org/10.1073/pnas.2002268117
24. Potts S.G., Biesmeijer J.C., Kremen C., Neumann P., Schweiger O., Kunin W.E. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010, 25: 345–353. https://doi.org/10.1016/j.tree.2010.01.007.
25. Odnosum H. V. Distribution of the Nosema ceranae [Microspora, Nosematidae] in the apiaries in Ukraine. Vestnik Zoologii. 2017, 51(2): 99 ‒ 110, P. 161‒166. https://doi.org/10.1515/vzoo-2017-0022
26. Odnosum H. V., Yefimenko T.M. Nosematoz of bee (distribution, pathogenesis, methods of diagnosis and prevention) // Monograph "Beekeeping of Ukraine". Kyiv: Lira-K Publishing House, 2021: 401‒462. (In Ukrainian).
27. Bromenshenk JJ, Henderson CB, Wick CH, Stanford MF, Zulich AW, Jabbour R.E., Deshpande S.V., McCubbin P.E., Seccomb R.A., Welch P.M., Williams T., Firth D.R. Skowronski E, Lehmann M.M., Bilimoria S.L., Gress J, Wanner K.W., Cramer R.A. Iridovirus and Microsporidian Linked to Honey Bee Colony Decline. Iridovirus and Microsporidian Linked to Honey Bee Colony Decline. PLoS ONE. 2010, 5(10): e13181. https://doi.org/10.1371/journal.pone.0013181