ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 17, No. 3, 2024
P. 66-77, Bibliography 63, Engl.
UDC: 577.344:577.19:582.284.3
doi: https://doi.org/10.15407/biotech17.03.066
Full text: (PDF, in English)
O.B. Mykhaylova 1, 2, A.M. Negriyko 3, K.G. Lopatko 4, N. Shchotkina 5, N.L. Poyedinok1
1 Igor Sikorsky Kyiv Polytechnic Institute, Ukraine
2 M.G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv
3 Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv
4 National University of Life and Environmental Sciences of the National Academy of Science of Ukraine, Kyiv
5 University of Oregon, Eugene, USA
The aim of the work was to study the influence of biogenic metal nanoparticles on the growth characteristics and biosynthetic activity of the fungus Laricifomes officinalis, as well as the effects of photocatalytic activity of NPs after exposure to low-intensity laser radiation under deep cultivation conditions.
Material and Methods. Traditional mycological methods, colloidal solutions of nanoparticles biogenic metals, and unique photobiological methods were used. The effect of light on the biosynthetic activity of L. officinalis was studied using low-intensity coherent monochromatic laser light with specified spectral and intensity characteristics. The experiment used water-based colloidal solutions of biogenic metals such as Fe, Mg, and Ag, obtained by a patented method.
Results. Treatment of the inoculum with colloidal solutions of nanoparticles of all used metals increased the growth of L. officinalis by 31–54%, while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of the L. officinalis mycelium by 14.4–22.6%. All nanoparticles suppressed the biosynthesis of extracellular polysaccharides, whereas treatment of the inoculum with colloidal solutions of FeNPs and MgNPs stimulated the synthesis of endopolysaccharides. At the same time, laser light irradiation in the presence of AgNPs increased the amount of endopolysaccharides, while FeNPs and MgNPs slightly inhibited their synthesis. Treatment of the inoculum with colloidal metal solutions and laser light affected the total phenolic content (TPC) in the mycelial mass. The highest TPC values in ethanol extracts with AgNPs and laser light irradiation were 97.31±3.7 mg of GAEs/g dry mass.
Conclusions. The research results gave ground to consider nanoparticles of biogenic metals (AgNPs, FeNPs, MgNPs) and low-intensity laser light as promising regulators of the biosynthetic activity of L. officinalis in the biotechnology of its cultivation.
Key words: laser, mycelial biomass, polysaccharides, total phenol compounds, antioxidant activity.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2024
References
1. Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules. (2019), 25(1): 112. https://doi.org/10.3390/molecules25010112
2. Kah M., Tufenkji N., White J.C. Nano-enabled strategies to enhance crop nutrition and protection. Nature Nanotechnology. 2019, 14(6): 532–540. https://doi.org/10.1038/s41565-019-0439-5
3. Lateef A., Darwesh O.M., Matter I.A. Microbial Nanobiotechnology: The Melting Pot of Microbiology, Microbial Technology and Nanotechnology. 2021, pp. 1–19. https://doi.org/10.1007/978-981-33-4777-9_1
4. Lowry G.V., Avellan A., Gilbertson L.M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nature Nanotechnology. 2019, 14(6): 517–522. https://doi.org/10.1038/s41565-019-0461-7
5. Zhang B., Xie M., Bruschweiler-Li L., Brüschweiler R. Nanoparticle-Assisted Metabolomics. Metabolites. 2018, 8(1): 21. https://doi.org/10.3390/metabo8010021
6. Yadav S., Chander S., Gupta A. Kataria N., Khoo K.S. Biogenic engineered zinc oxide nanoparticle for sulfur black dye removal from contaminated wastewater: comparative optimization, simulation modeling, and isotherms. Bioengineered. 2024, 15(1). https://doi.org/10.1080/21655979.2024.2325721
7. Mitragotri S., Anderson D.G., Chen X., Chow E.K., Ho D., Kabanov A.V., Xu C. Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano. 2015, 9(7): 6644–6654. https://doi.org/10.1021/acsnano.5b03569
8. Adebayo E.A., Azeez M.A., Alao M.B., Oke M.A., Aina D.A. Mushroom Nanobiotechnology: Concepts, Developments and Potentials. In: Lateef A., Gueguim-Kana E.B., Dasgupta N., Ranjan S. (eds) Microbial Nanobiotechnology. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. 2021, https://doi.org/10.1007/978-981-33-4777-9_9
9. Dhanjal D.S., Mehra P., Bhardwaj S., Singh R., Sharma P., Nepovimova E., Kuca K. Mycology-Nanotechnology Interface: Applications in Medicine and Cosmetology. International Journal of Nanomedicine. 2022, 17: 2505–2533. https://doi.org/10.2147/IJN.S363282
10. Dziwulska-Hunek A., Kachel M., Gagoś M., Szymanek M. Influence of Silver Nanoparticles, Laser Light and Electromagnetic Stimulation of Seeds on Germination Rate and Photosynthetic Parameters in Pumpkin (Cucurbita pepo (L.) Leaves. Applied Sciences. 2021, 11(6): 2780. https://doi.org/10.3390/app11062780
11. Hassan M., Shaaban S.A., El Ziat R.A., Khaled K.A. Laser-induced changes in the gene expression, growth and development of Gladiolus grandiflorus cv. “White Prosperity.” Scientific Reports. 2024, 14(1): 6257. https://doi.org/10.1038/s41598-024-56430-6
12. Swathy P.S., Kiran K.R., Joshi M.B., Mahato K.K., Muthusamy A. He–Ne laser accelerates seed germination by modulating growth hormones and reprogramming metabolism in brinjal. Scientific Reports. 2021, 11(1): 7948. https://doi.org/10.1038/s41598-021-86984-8
13. Poyedinok N., Mykchaylova O., Sergiichuk N., Tugay T., Tugay A., Lopatko S., Matvieieva N. Effect of colloidal metal nanoparticles on biomass, polysaccharides, flavonoids, and melanin accumulation in medicinal mushroom Inonotus obliquus (Ach.:Pers.) Pilát. Applied Biochemistry and Biotechnology. 2020, 191(3): 1315–1325. https://doi.org/10.1007/s12010-020-03281-2
14. Mykchaylova O., Dubova H., Negriyko A., et al. Photoregulation of the biosynthetic activity of the edible medicinal mushroom Lentinula edodes in vitro. Photochemical & Photobiological Sciences. 2024, 23(3):435–449. https://doi.org/10.1007/s43630-023-00529-8
15. Poyedinok N.L., Tugay T.I., Tugay A.V., Mykchaylova O.B., Sergiichuk N.N., Negriyko A.M. Influence of nitrogen concentration on photoinduced growth, enzymatic activity and melanine synthesis by Inonotus obliquus (Ach.:Pers.) Pilát. Biotechnologia Acta. 2019, 12(4): 34–41. https://doi.org/10.15407/biotech12.04.034
16. Poyedinok N., Mykchaylova O.B., Tugay N. Tugay A., Negriyko A., Dudka I. Effect of light wavelengths and coherence on growth, enzymes activity, and melanin accumulation of liquid-cultured Inonotus obliquus (Ach.:Pers.) Pilát. Applied biochemistry and biotechnology. 2015, 176(2): 333–343. https://doi.org/10.1007/s12010-015-1577-3
17. Poyedinok N.L., Mykchaylova O.B., Sergiichuk N., Negriyko A.M. Realization of macromycete photoinduced growth activity: influence of cultivation ways and the concentration of carbon and nitrogen. Innovative Biosystems Bioengineering. 2018, 2(3): 196–202. https://doi.org/10.20535/ibb.2018.2.3.134629
18. Mykchaylova O., Dubova H., Lomberg M. ., Negriyko A., Poyedinok N. Influence of low-intensity light on the biosynthetic activity of the edible medicinal mushroom Hericium erinaceus (Bull.: Fr.) Pers. in vitro. Archives of Biological Sciences. 2023, 75(4): 489–501. https://doi.org/10.2298/ABS230821040M
19. Poyedinok N.L., Mykchaylova O.B., Dudka I.A. Effect of low-intensity laser irradiation on the cultivated macromycetes seed culture growth activity. Microbiology and biotechnology. 2015, (1): 77–86. https://doi.org/10.18524/2307-4663.2015.1(29).48037
20. Hakki A., Schneider J., Bahnemann D. in Photocatalysis: Fundamentals and Perspectives, ed. J. Schneider, D. Bahnemann, J. Ye, G. Li Puma, D. D. Dionysiou, J. Schneider, D. D. Dionysiou, The Royal Society of Chemistry, 2016, pp. 29‒50. https://doi.org/10.1039/9781782622338
21. Liu L., Zhang X., Yang L., Ren L., Wang D., Ye, J. Metal nanoparticles induced photocatalysis. National Science Review. 2017, 4(5): 761–780. https://doi.org/10.1093/nsr/nwx019
22. Aragaw T.A., Bogale F.M., Aragaw B.A. Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. Journal of Saudi Chemical Society. 2021, 25(8): 101280. https://doi.org/10.1016/j.jscs.2021.101280
23. Pugazhendhi A., Prabhu R., Muruganantham K. Shanmuganathan R., Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. Journal of Photochemistry and Photobiology B: Biology. 2019, 190: 86–97. https://doi.org/10.1016/j.jphotobiol.2018.11.014
24. Rodríguez-González V., Terashima C., Fujishima A. Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2019, 40: 49–67. https://doi.org/10.1016/j.jphotochemrev.2019.06.001
25. Naranmandakh S., Murata T., Odonbayar B., Suganuma K., Batkhuu J., & Sasak, K. Lanostane triterpenoids from Fomitopsis officinalis and their trypanocidal activity. Journal of Natural Medicines. 2018, 72(2): 523–529. https://doi.org/10.1007/s11418-018-1182-1
26. Gafforov Y., Muszyńska B., Sułkowska-Ziaja K., Tomšovský M., Yarasheva M., Pecoraro L., Mykchaylova O., Rapior, S. Laricifomes officinalis (Vill.) Kotl. & Pouzar ‒ Fomitopsidaceae. 2023, 1237–1251. https://doi.org/10.1007/978-3-031-23031-8_116
27. Flores G.A., Cusumano G., Ianni F., Blasi F., Angelini P., Cossignani L., Ferrante C. Fomitopsis officinalis: Spatial (Pileus and Hymenophore) Metabolomic Variations Affect Functional Components and Biological Activities. Antibiotics. 2023, 12(4). https://doi.org/10.3390/ANTIBIOTICS12040766
28. Girometta C. Antimicrobial properties of Fomitopsis officinalis in the light of its bioactive metabolites: a review. Mycology. 2018, 10(1): 32–39. https://doi.org/10.1080/21501203.2018.1536680
29. Hwang C.H., Jak B.U., Klei LL., Lankin D.C., McAlpine J.B., Napolitano J.G., Pauli G.F. Chlorinated coumarins from the polypore mushroom Fomitopsis officinalis and their activity against Mycobacterium tuberculosis. Journal of Natural Products. 2013, https://doi.org/10.1021/np400497f
30. Muszyńska B., Fijałkowska A., Sułkowska-Ziaja K., Włodarczyk A., Kaczmarczyk P., Nogaj E., Piętka, J. Fomitopsis officinalis: a Species of Arboreal Mushroom with Promising Biological and Medicinal Properties. Chemistry and Biodiversity. 2020, 17(6). https://doi.org/10.1002/cbdv.202000213
31. Mykchaylova O.B., Poyedinok N.L., Shchetinin V.M. Screening of strains of the medicinal mushroom Fomitopsis officinalis (Vill.) Bondartsev & Singer promising for biotechnological use. Innovative Biosystems and Bioengineering. 2022, 6(3–4):
110–118. https://doi.org/10.20535/IBB.2022.6.3-4.271383
32. Fijałkowska A., Muszyńska B., Sułkowska-Ziaja K., Kała K., Pawlik A., Stefaniuk D., Jaszek M. Medicinal potential of mycelium and fruiting bodies of an arboreal mushroom Fomitopsis officinalis in therapy of lifestyle diseases. Scientific Reports. 2020, 10(1). https://doi.org/10.1038/s41598-020-76899-1
33. Shi Z. T., Bao H. Y., Feng S. Antitumor activity and structure-activity relationship of seven lanostane-type triterpenes from Fomitopsis pinicola and F. officinalis. Zhongguo Zhongyao Zazhi. 2017, 42(5): 915–922. https://doi.org/10.19540/j.cnki.cjcmm.20170121.017
34. Lopatko K.G., Melnichuk M.D., Aftandilyants Y.G., Gonchar E.N., Boretskij V.F., Veklich A.N., Trach, V.V. Obtaining of metallic nanoparticles by plasma-erosion electrical discharges in liquid mediums for biological application. Annals of Warsaw University of Life Sciences-SGGW. Agriculture. 2013, 61: 105–115.
35. Lopatko S., Chayka V. The main ways for metal nanoparticles degradation. Biological Systems: Theory and Innovation 2022, 13(3–4). https://doi.org/10.31548/biologiya13(3-4).2022.061
36. Mykchaylova O.B., Negriyko A.M., Poyedinok, N.L. Influence of low-intensity light on the biosynthetic activity of the medicinal macromycete Laricifomes officinalis (Fomitopsidaceae, Polyporales) in vitro. Biotechnologia Acta. 2024, 17(1): 43–54. https://doi.org/10.15407/biotech17.01.043
37. Rašeta M., Popović M., Knežević P., Šibul F., Kaišarević S., Karaman M. Bioactive Phenolic Compounds of Two Medicinal Mushroom Species Trametes versicolor and Stereum subtomentosum as Antioxidant and Antiproliferative Agents. Chemistry & Biodiversity. 2020, 17(12): e2000683. https://doi.org/10.1002/CBDV.202000683
38. Li Q., Liu F., Li M., Chen C., Gadd G.M. Nanoparticle and nanomineral production by fungi. Fungal Biology Reviews. 2022, 41: 31–44. https://doi.org/10.1016/j.fbr.2021.07.003
39. Guo H., Barnard A.S. Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. J. Mater. Chem. A. 2013, 1(1): 27–42. https://doi.org/10.1039/C2TA00523A
40. Phan H.T., Haes A.J. What Does Nanoparticle Stability Mean? The Journal of Physical Chemistry C. 2019, 123(27): 16495–16507. https://doi.org/10.1021/acs.jpcc.9b00913
41. Salata O. Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology. 2004, 2(1): 3. https://doi.org/10.1186/1477-3155-2-3
42. Amendola V., Pilot R., Frasconi M., Maragò OM., Iatì MA. Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter. 2017, 29(20): 203002. https://doi.org/10.1088/1361-648X/aa60f3
43. de Mol N.J., Fischer M.J.E. Surface Plasmon Resonance: A General Introduction 2010, (pp. 1–14). https://doi.org/10.1007/978-1-60761-670-2_1
44. Arias L., Pessan J., Vieira A., Lima TMT, Delbem ACB, Monteiro DR. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics. 2018, 7(2): 46. https://doi.org/10.3390/antibiotics7020046
45. Behra R., Sigg L., Clift M.J.D., Herzog F, Minghetti M, Johnston B, Petri-Fink A, Rothen-Rutishauser B. Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. Journal of The Royal Society Interface. 2013, 10(87): 20130396. https://doi.org/10.1098/rsif.2013.0396
46. Magro M., De Liguoro M., Franzago E., Baratella D., Vianello E. The surface reactivity of iron oxide nanoparticles as a potential hazard for aquatic environments: A study on Daphnia magna adults and embryos. Scientific Reports. 2018, 8(1): 13017. https://doi.org/10.1038/s41598-018-31483-6
47. Hoshyar N., Gray S., Han H., Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016, 11(6): 673–692. https://doi.org/10.2217/nnm.16.5
48. Vynarchuk K., Lopatko K.G. Effect of nanoparticles on morphological parameters of wheat. Molecular Crystals and Liquid Crystals. 2024, 1–17. https://doi.org/10.1080/15421406.2024.2358730
49. Bisen P.S., Baghel R.K., Sanodiya B.S., Thakur G.S., & Prasad G.B.K.S. Lentinus edodes: A Macrofungus with Pharmacological Activities. Current Medicinal Chemistry. 2010, 17(22): 2419–2430. https://doi.org/10.2174/092986710791698495
50. Wang Q., Wang F., Xu Z., Ding, Z. Bioactive Mushroom Polysaccharides: A Review on Monosaccharide Composition, Biosynthesis and Regulation. Molecules. 2017, 22(6): 955. https://doi.org/10.3390/molecules22060955
51. Meng X., Liang H., Luo L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydrate Research. 2016, 424: 30–41. https://doi.org/10.1016/j.carres.2016.02.008
52. Venturella G., Ferraro V., Cirlincione F., Gargano M.L. Medicinal mushrooms: Bioactive compounds, use, and clinical trials. International Journal of Molecular Sciences. 2021, 22(2): 1–31. https://doi.org/10.3390/IJMS22020634
53. Xu X., Yan H., Tang J., Zhang, X. Polysaccharides in Lentinus edodes: Isolation, Structure, Immunomodulating Activity and Future Prospective. Critical Reviews in Food Science and Nutrition. 2014, 54(4): 474–487. https://doi.org/10.1080/10408398.2011.587616
54. Cateni F., Gargano M.L., Procida G., Venturella G., Cirlincione F., Ferraro V. Mycochemicals in wild and cultivated mushrooms: nutrition and health. Phytochemistry Reviews. 2022, 21(2): 339–383. https://doi.org/10.1007/s11101-021-09748-2
55. Roszczyk A., Turło J., Zagożdżon R., Kaleta B. Immunomodulatory Properties of Polysaccharides from Lentinula edodes. International journal of molecular sciences. 2022, 23(16). https://doi.org/10.3390/IJMS23168980
56. Łysakowska P., Sobota A., Wirkijowska A. Medicinal Mushrooms: Their Bioactive Components, Nutritional Value and Application in Functional Food Production ‒ A Review. Molecules. 2023, 28(14): 5393. https://doi.org/10.3390/molecules28145393
57. Muszyńska B., Grzywacz-Kisielewska A., Kała K., Gdula-Argasińska J. Anti-inflammatory properties of edible mushrooms: A review. Food Chemistry. 2018, 243: 373–381. https://doi.org/10.1016/j.foodchem.2017.09.149
58. Sułkowska-Ziaja K., Fijałkowska A., Muszyńska B. Selected Species of Medicinal/Arboreal Mushrooms as a Source of Substances with Antioxidant Properties. In Reference Series in Phytochemistry 2022, Springer Science and Business Media B.V. (pp. 95–121). https://doi.org/10.1007/978-3-030-78160-6_38
59. Vorobyova V., Vasyliev G., Uschapovskiy D., Khrokalo L., Skiba M. Green synthesis, characterization of silver nanoparticals for biomedical application and environmental remediation. Journal of Microbiological Methods. 12022, 93: 06384. https://doi.org/10.1016/j.mimet.2021.106384
60. Levy L, Sahoo Y, Kim K-S, Bergey EJ, Prasad PN. Nanochemistry: Synthesis and Characterization of Multifunctional Nanoclinics for Biological Applications. Chemistry of Materials. 2002, 14: 3715–3721. https://doi.org/10.1021/cm0203013
61. Cheung L.M., Cheung P.C.K., Ooi V.E.C. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chemistry. 2023, 81(2): 249–255. https://doi.org/10.1016/S0308-8146(02)00419-3
62. Reis F.S., Barros L., Martins A., Ferreira I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food and Chemical Toxicology. 2012, 50(2): 191–197. https://doi.org/10.1016/J.FCT.2011.10.056
63. Reis F.S., Martins A., Vasconcelos M.H., Ferreira, I.C.F.R. Functional foods based on extracts or compounds derived from mushrooms. Trends in Food Science and Technology. 2017, 66: 48–62. https://doi.org/10.1016/J.TIFS.2017.05.010
64. Teleanu R., Chircov C., Grumezescu A., Volceanov A, Teleanu DM. Antioxidant Therapies for Neuroprotection ‒ A Review. Journal of Clinical Medicine. 2019, 8(10): 1659. https://doi.org/10.3390/jcm8101659