ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 5 , 2023
P. 61-69, Bibliography 39, Engl.
UDC:: 604.6:577.13
DOI: https://doi.org/10.15407/biotech16.05.061
Full text: (PDF, in English)
EFFECT OF PHENYLALANINE AND LIGHT ON THE GROWTH OF HAIRY ROOTS OF Artemisia tilesii LEDEB
Bohdanovych Т.А., Matvieieva N.А.
Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv
Aim. To analyze the possibility of using phenylalanine of various concentrations and different lighting modes separately and in combination to boost the biomass accumulation and biosynthesis of flavonoids in two lines of Artemisia tilese Ledeb. Hairy roots.
Methods. The roots were grown on a solidified medium with phenylalanine at high (1mM) and low concentrations (0.05 and 0.1 mM) with lighting (3000 lx, 16 h) and in darkness. After four weeks of cultivation, weight gain, flavonoid content, and DPPH-scavenging activity were determined according to the standard tests.
Results. Roots grown in light were greenish in color, more branched, and thick, yet the roots were more elongated after maintenance in the dark. The addition of 1 mM phenylalanine has led to the inhibition of the growth of all samples. The tolerance to lower concentrations varied among the lines. The flavonoid content for all samples of both lines was higher in the light (up to 3.14 times), regardless of the concentration of phenylalanine. The antioxidant activity was also higher for the roots grown in light, and the values of EC50 correlated with the flavonoid content.
Conclusions. Illumination boosted the synthesis of flavonoids and antioxidant activity in all samples of both hairy root lines. The effect of phenylalanine addition on biomass accumulation and flavonoid biosynthesis was line-specific.
Key words: Artemisia tilesii Ledeb., hairy roots, phenylalanine, light mode, elicitors, flavonoids, antioxidant activity.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
References
1. Saarela J. M., Sokoloff P. C., Gillespie L. J., Bull R. D., Bennett B. A., Ponomarenko S. Vascular plants of Victoria Island (Northwest Territories and Nunavut, Canada): a specimen-based study of an Arctic flora. PhytoKeys. 2020, 141, 1–330. https://doi.org/10.3897/phytokeys.141.48810
2. Sharifi-Rad J., Herrera-Bravo J., Semwal P., Painuli S., Badoni H., Ezzat S. M., Farid M. M., Merghany R. M., Aborehab N. M., Salem M. A., Sen S., Acharya K., Lapava N., Martorell M., Tynybekov B., Calina D., Cho W. C. Artemisia spp.: An Update on Its Chemical Composition, Pharmacological and Toxicological Profiles. Oxid. Med. Cell. Longev. 2022, 2022, 5628601. https://doi.org/10.1155/2022/5628601
3. Ekiert H., Klimek-Szczykutowicz M., Rzepiela A., Klin P., Szopa A. Artemisia Species with High Biological Values as a Potential Source of Medicinal and Cosmetic Raw Materials. Molecules. 2022, 27(19), 6427. https://doi.org/10.3390/molecules27196427
4. Kshirsagar S. G., Rao R. V. Antiviral and Immunomodulation Effects of Artemisia. Medicina. 2021, 57(3), 217. https://doi.org/10.3390/medicina57030217
5. Trendafilova A., Moujir L. M., Sousa P. M. C., Seca A. M. L. Research Advances on Health Effects of Edible Artemisia Species and Some Sesquiterpene Lactones Constituents. Foods. 2020, 10(1), 65. https://doi.org/10.3390/foods10010065
6. Peng W., Wang N., Wang S., Wang J., Bian Z. Effect of co-treatment of microwave and exogenous L-phenylalanine on the enrichment of flavonoids in Tartary buckwheat sprouts. J Sci Food Agric. 2023, 103(4), 2014–22. https://doi.org/10.1002/jsfa.12263
7. Demirci T., Çelikkol Akçay U., Göktürk Baydar N. Effects of 24-epibrassinolide and L-phenylalanine on growth and caffeic acid derivative production in hairy root culture of Echinacea purpurea L. Moench. Acta Physiol Plant. 2020, 42, 66. https://doi.org/10.1007/s11738-020-03055-7
8. Cao D. M., Vu P. T. B., HoangM. T. T., Bui A. L., Quach P. N. D. Developing a Sufficient Protocol for the Enhancement of α-Glucosidase Inhibitory Activity by Urena lobata L. Aeroponic Hairy Roots Using Exogenous Factors, a Precursor, and an Elicitor. Plants. 2020, 9(4), 548. https://doi.org/10.3390/plants9040548
9. Arya D., Patni V. Pharmacognostic profile and phytochemical investigation of Pluchea lanceolata Oliver & Hiern. vivo and in vitro. Int. J. Pharm. Sci. Rev. Res. 2013, 22, 157–61.
10. Sykłowska-Baranek K., Pietrosiuk A., Naliwajski M. R., Kawiak A., Jeziorek M., Wyderska S., Lojkowska E., Chinou I. Effect of L-phenylalanine on PAL activity and production of naphthoquinone pigments in suspension cultures of Arnebia euchroma (Royle) Johnst. In Vitro Cell Dev Biol Plant. 2012, 48(5), 555–64. doi: https://doi.org/10.1007/s11627-012-9443-2
11. Andi S.A., Gholami M., Ford C.M., Maskani F. The effect of light, phenylalanine and methyl jasmonate, alone or in combination, on growth and secondary metabolism in cell suspension cultures of Vitis vinifera, J. Photochem. Photobiol. B. 2018, 199, 111625. https://doi.org/10.1016/j.jphotobiol.2019.111625
12. Kwiecień I., Miceli N., D'Arrigo M., Marino A., Ekiert H. Antioxidant Potential and Enhancement of Bioactive Metabolite Production in In Vitro Cultures of Scutellaria lateriflora L. by Biotechnological Methods. Molecules. 2022, 27(3), 1140. https://doi.org/10.3390/molecules27031140
13. Noviyanti R., Sari R.L., Kristanti A.N., Yachya A., Manuhara Y.S. Biomass and Flavonoid production of Gynura procumbens adventitious roots induced by sucrose, Phenylalanine and Tyrosine. Biosci. Res. 2017, 14, 934–41.
14. Fadzliana N.A.F. , Rogayah S., Shaharuddin N.A., Janna O.A. Addition of L-Tyrosine to improve betalain production in red pitaya callus. Pertanika J. Trop. Agric. Sci. 2017, 40, 521–32.
15. Tusevski, O., Petreska Stanoeva, J., Stefova, M., & Simic, S. G. Phenolic profile of dark-grown and photoperiod-exposed Hypericum perforatum L. hairy root cultures. ScientificWorldJournal. 2013, 2013, 602752. https://doi.org/10.1155/2013/602752
16. Thwe A.A., Kim Y., Li X., Kim Y.B., Park N.I., Kim H.H., Kim S.-J., Park S.U. Accumulation of phenylpropanoids and correlated gene expression in hairy roots of Tartary buckwheat under light and dark conditions. Appl. Biochem. Biotechnol. 2014, 174, 2537–47. https://doi.org/10.1007/s12010-014-1203-9.
17. Marsh Z., Yang T., Nopo-Olazabal L., Wu S., Ingle T., Joshee N., Medina-Bolivar F. Effect of light, methyl jasmonate and cyclodextrin on production of phenolic compounds in hairy root cultures of Scutellaria lateriflora. Phytochemistry. 2014, 107, 50–60. https://doi.org/10.1016/j.phytochem.2014.08.020.
18. Wongshaya P., Chayjarung P., Tothong C., Pilaisangsuree V., Somboon T., Kongbangkerd A., Limmongkon A. Effect of light and mechanical stress in combination with chemical elicitors on the production of stilbene compounds and defensive responses in peanut hairy root culture. Plant Physiol. Biochem. 2020, 157, 93–104. https://doi.org/10.1016/j.plaphy.2020.10.015.
19. Zhang D., Sun W., Shi Y., Wu L., Zhang T., Xiang L. Red and Blue Light Promote the Accumulation of Artemisinin in Artemisia annua L. Molecules. 2018, 23(6), 1329. https://doi.org/10.3390/molecules23061329
20. Jiao J., Gai Q. Y., Yao L. P., Niu L. L., Zang Y. P., Fu Y. J. Ultraviolet radiation for flavonoid augmentation in Isatis tinctoria L. hairy root cultures mediated by oxidative stress and biosynthetic gene expression. Ind Crops Prod. 2018, 118, 347–54. https://doi.org/10.1016/j.indcrop.2018.03.046
21. Takshak S., Agrawal S. B. Defence strategies adopted by the medicinal plant Coleus forskohlii against supplemental ultraviolet-B radiation: augmentation of secondary metabolites and antioxidants. Plant Physiol. Biochem. 2015, 97, 124–38. https://doi.org/10.1016/j.plaphy.2015.09.018
22. Fazal H., Abbasi B. H., Ahmad N., Ali M., Ali S. Sucrose induced osmotic stress and photoperiod regimes enhanced the biomass and production of antioxidant secondary metabolites in shake-flask suspension cultures of Prunella vulgaris L. Plant Cell Tissue Organ Cult. 2016, 124, 573–81. https://doi.org/10.1007/s11240-015-0915-z
23. Kumar S. S., Arya M., Mahadevappa P., Giridhar P. Influence of photoperiod on growth, bioactive compounds and antioxidant activity in callus cultures of Basella rubra L. J. Photochem. Photobiol. B. 2020, 209, 111937. https://doi.org/10.1016/j.jphotobiol.2020.111937
24. Wu C. H., Murthy H. N., Hahn E. J., Paek K. Y. Enhanced production of caftaric acid, chlorogenic acid and cichoric acid in suspension cultures of Echinacea purpurea by the manipulation of incubation temperature and photoperiod. Biochem. Eng. J. 2007, 36, 301–3. https://doi.org/10.1016/j.bej.2007.02.024
25. de Castro K. M., Batista D. S., Fortini E. A., Silva T. D., Felipe S. H. S., Fernandes A. M., de Jesus Sousa R. M., de Queiroz Nascimento L. S., Campos V. R., Grazul R., Viccini L. F., Otoni W. Photoperiod modulates growth, morphoanatomy, and linalool content in Lippia alba L. (Verbenaceae) cultured in vitro. Plant Cell Tissue Organ Cult. 2019, 139, 139–53. https://doi.org/10.1007/s11240-019-01672-w
26. Tashackori H., Sharifi M., Ahmadian Chashmi N., Safaie N., Behmanesh M. Induced-differential changes on lignan and phenolic acid compounds in Linum album hairy roots by fungal extract of Piriformospora indica. Plant Cell Tiss Organ Cult. 2016, 127, 187–94. https://doi.org/10.1007/s11240-016-1041-2
27. Jiao J., Gai Q. Y., Niu L. L., Wang X. Q., Guo N., Zang Y. P., Fu Y. J. (). Enhanced Production of Two Bioactive Isoflavone Aglycones in Astragalus membranaceus Hairy Root Cultures by Combining Deglycosylation and Elicitation of Immobilized Edible Aspergillus niger. J. Agric. Food Chem. 2017, 65(41), 9078–86. https://doi.org/10.1021/acs.jafc.7b03148
28. Ghimire B., Thiruvengadam M., Chung I.-M. Identification of elicitors enhances the polyphenolic compounds and pharmacological potential in hairy root cultures of Aster scaber. S. Afr. J. Bot. 2019, 125. 92–101. https://doi.org/10.1016/j.sajb.2019.07.006.
29. Krzemińska M., Owczarek A., Gonciarz W., Chmiela M., Olszewska M. A., Grzegorczyk-Karolak I. The Antioxidant, Cytotoxic and Antimicrobial Potential of Phenolic Acids-Enriched Extract of Elicited Hairy Roots of Salvia bulleyana. Molecules. 2022, 27(3), 992. https://doi.org/10.3390/molecules27030992
30. Gharari Z., Bagheri K., Danafar H., Sharafi A. Enhanced flavonoid production in hairy root cultures of Scutellaria bornmuelleri by elicitor induced over-expression of MYB7 and FNSП2 genes. Plant Physiol. Biochem. 2020, 148, 35–44. https://doi.org/10.1016/j.plaphy.2020.01.002
31. Chung I. M., Rekha K., Rajakumar G., Thiruvengadam M. (). Influence of silver nanoparticles on the enhancement and transcriptional changes of glucosinolates and phenolic compounds in genetically transformed root cultures of Brassica rapa ssp. rapa. Bioprocess Biosyst Eng. 2018, 41(11), 1665–77. https://doi.org/10.1007/s00449-018-1991-3
32. Nourozi E., Hosseini B., Maleki R., Abdollahi Mandoulakani B. Iron oxide nanoparticles: a novel elicitor to enhance anticancer flavonoid production and gene expression in Dracocephalum kotschyi hairy-root cultures. J. Sci. Food Agric. 2019, 99(14), 6418–30. https://doi.org/10.1002/jsfa.9921
33. Matvieieva N.A., Shakhovsky A.M., Belokurova V.B., Drobot K.O. Artemisia tilesii Ledeb. hairy roots establishment using Agrobacterium rhizogenes-mediated transformation. Prep. Biochem. Biotechnol. 2016, 46(4), 342–5. https://doi.org/10.1080/10826068.2015.1031393
34. Pękal A., Pyrzynska K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods. 2014, 7, 1776–1782. https://doi.org/10.1007/s12161-014-9814-x
35. Brand-Williams W., Cuvelier M. E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology. 1995, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
36. Jacob A., Malpathak N. Green hairy root cultures of Solanum khasianum Clarke – A new route to in vitro solasodine production. Curr. Sci. 2004, 1442–7. https://www.jstor.org/stable/24109486
37. Abbasi B.H., Tian C.-L., Murch S.J., Saxena P.K., Liu C.-Z. Light-enhanced caffeic acid derivatives biosynthesis in hairy root cultures of Echinacea Purpurea. Plant Cell Rep. 2007, 26, 1367–1372. https://doi.org/10.1007/s00299-007-0344-5
38. Park C.H., Park Y.E., Yeo H.J., Park N.I., Park S.U. Effect of Light and Dark on the Phenolic Compound Accumulation in Tartary Buckwheat Hairy Roots Overexpressing ZmLC. Int. J. Mol. Sci. 2021, 22(9), 4702. https://doi.org/10.3390/ijms22094702
39. Liu C.-Z., Guo C., Wang Y-C., Ouyang F. Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua L. Process Biochem. 2002, 38(4), 581–5. https://doi.org/10.1016/S0032-9592(02)00165-6