ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 4, 2023
P. 22-29, Bibliography 52, Engl.
UDC: [578.8:57.083]:606
DOI: https://doi.org/10.15407/biotech16.04.022
VESICULOVIRUSES AS A TOOL OF BIOTECHNOLOGY
L.P. Buchatskyi1, O.V. Zaloilo1, I.A. Zaloilo1, V. V. Nedosekov2, Yu.P. Rud1
1 Taras Schevchenko Kiev National University, Ukraine
2 Royal Veterinary College, University of London, UK
Vesiculoviruses are widely used in various fields of biotechnology. This article analyzes the results of published experimental works devoted to the development of oncolytic and recombinant vaccines against emergent viral infections based on vesiculoviruses. The use of genetic engineering methods makes it possible to strengthen their immunogenicity and oncolytic potential.
Aim. Analysis and summarization of available information devoted to the development of oncolytic and other vaccines based on vesiculoviruses.
Materials and methods. Publications were selected based on the PubMed (https://pubmed.ncbi.nlm.nih.gov/) and Google Scholar (https://scholar.google.com/) databases published in 2010–2023. They include information on the development of oncolytic and other vaccines based on vesiculoviruses.
Results. The article describes in detail the use of vesiculoviruses as a tool for creating highly active recombinant viral vaccines. These vaccines are able to protect people from emergent viral infections in various countries and may find application in anticancer therapy.
Key words: vesiculoviruses, vaccines, oncolysis.
References
- Walker P.J., Freitas-Astúa J., Bejerman N., Blasdell K.R., Breyta R., Dietzgen RG, Fooks AR, Kondo H, Kurath G, Kuzmin IV, Ramos-González PL, Shi M, Stone DM, Tesh RB, Tordo N, Vasilakis N, Whitfield AE, ICTV Virus Taxonomy Profile:Rhabdoviridae. Journal of General Virology. 2022, 103:001689 https://doi.org/1099/jgv.0.001689
- Ng , Driscoll C., Paz Carlos M., Prioleau A., Schmieder R., Dwivedi B., Wong J., Cha Y., Head S., Breitbart M., Delwart E. Distinct Lineage of Vesiculovirus from Big Brown Bats. Emerging Infectious Diseases. 2013, 19(12), 1978‒1980, https://doi.org/10.3201/eid1912.121506
- Letko M., Seifert S.N., Olival K.J.Bat-borne virus diversity, spillover and emergence. Nat Rev Microbiol. 2020,18, 461–471. https://doi.org/10.1038/s41579-020-0394-z
- Haglund K., Forman J., Kräusslich H.G., Rose J.K. Expression of human immunodeficiency virus type 1 gag protein precursor and envelope proteins from a vesicular stomatitis virus recombinant: High-level production of virus-like particles containing HIV envelope. Virology. 2000, 268, 112–121.https://doi.org/10.1006/viro.1999.0120.
- Whitt M.A. Generation of VSV pseudotypes using recombinant ∆G-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J. Virol. Methods. 2010, 169, 365–374. https://doi.org/10.1016/j.jviromet.2010.08.006
- Munis A.M., Bentley E.M., Takeuchi Y. A tool with many applications: Vesicular stomatitis virus in research and medicine. Expert Opin. Biol. Ther. 2020, 20, 1187–1201. https://doi.org/10.1080/14712598.2020.1787981
- Whelan S.P., Ball L.A., Barr J.N., Wertz G.T. Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc. Natl. Acad. Sci. USA.1995, 92, 8388–8392. https://doi.org/10.1073/pnas.92.18.8388
- Liu G., Cao W., Salawudeen A., Zhu W., Emeterio K., Safronetz D., Banadyga L. Vesicular Stomatitis Virus: From Agricultural Pathogen to Vaccine Vector. Pathogens. 2021, 10, 1092. https://doi.org/10.3390/ pathogens10091092
- Schnell M.J., Buonocore L., Whitt M.A., Rose J.K. The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. J. Virol. 1996, 70, 2318–2323. https://doi.org/10.1128/JVI.70.4.2318-2323.1996
- Jones S.M., Feldmann H., Ströher U., Geisbert J.B., Fernando L., Grolla A., Klenk H.D., Sullivan N.J., Volchkov V.E., Fritz E.A., Daddario K.M., Hensley L.E., Jahrling P.B., Geisbert T.W. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat. Med. 2005, 11, 786–790. https://doi.org/10.1038/nm1258
- Feldmann H., Jones S.M., Daddario-DiCaprio K.M., Geisbert J.B., Ströher U., Grolla A., Bray M., Fritz E.A., Fernando L., Feldman F., Hensley L.E., Giesbert T.W. Effective post-exposure treatment of Ebola infection. PLoS Pathog. 2007, 3, e2. https://doi.org/10.1371/journal.ppat.0030002
- 12. Suder E., Furuyama W., Feldmann H., Marzi A., de Wit E. The vesicular stomatitis virus-based Ebola virus vaccine: From concept to clinical trials. Hum. Vaccines Immunother. 2018, 14, 2107–2113. https://doi.org/10.1080/21645515.2018.1473698
- Ollmann S.E. A Vaccine against Ebola Virus. Cell. 2020, 181 (1), 6. https://doi.org/10.1016/j.cell.2020.03.0111
- 4. Aljowaie R.M. Resurgence of Ebola Virus: Transmission, Pathogenesis, Prevention and Cure Pakistan Journal of Medical and Health. Sciences 2023,17(1), 501‒505 https://doi.org/10.53350/pjmhs2023171501
- Garbutt M., Liebscher R., Wahl-Jensen V., Jones S., Möller P., Wagner R., Volchkov V., Klenk H.D., Feldmann H., Ströher U. Properties of Replication-Competent Vesicular Stomatitis Virus Vectors Expressing Glycoproteins of Filoviruses and Arenaviruses Virol. 2004, 78(10), 5458–5465. https://doi.org/10.1128/jvi.78.10.5458-5465.2004
- Geisbert T.W., Jones S., Fritz E.A., Shurtleff A.C., Geisbert J.B., Liebscher R., Grolla A., Ströher U., Fernando L., Daddario K.M., Guttieri M.C., Mothé B.R., Larsen T., Hensley L.E., Jahrling P.B., Feldmann H. Development of a new vaccine for the prevention of Lassa fever. PLoS Med. 2005, 2, https://doi.org/10.1371/journal.pmed.0020183
- Emanuel J., Callison J., Dowd K.A., Pierson T.C., Feldmann H., Marzi A. A VSV-based Zika virus vaccine protects mice from lethal challenge. Rep. 2018, 8(1), 11043. https://doi.org/10.1038/s41598-018-29401-x
- Li A., Xue M., Attia Z., Yu J., Lu M., Shan C., Liang X., Gao T.Z., Shi P.Y., Peeples M.E., Boyaka P.N., Liu S.L., Li J. Vesicular Stomatitis Virus and DNA Vaccines Expressing Zika Virus Nonstructural Protein 1 Induce Substantial but Not Sterilizing Protection against Zika Virus Infection. Virol. 2020, 94(17), e00048-20. https://doi.org/10.1128/JVI.00048-20
- 19. Kapadia S.U., Rose J.K., Lamirande E., Vogel L., Subbarao K., Roberts A. Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology. 2005, 340(2), 174–182. https://doi.org/10.1016/j.virol.2005.06.016
- 20. Peng K., Carey T.., Lech P., Vandergaast R., MuñozAlía M., Packiriswamy N. Gnanadurai C., Krotova K., Tesfay M., Ziegler C., Haselton M., Sevola K., Lathrum C., Reiter S., Narjari R., Balakrishnan B., Suksanpaisan L., Sakuma T., Recker J., Zhang L., Waniger S., Russell L., Petro C.D., Kyratsous C.A., Baum A., Janecek J.L., Lee R.M., Ramachandran S., Graham M.L., Russell S.J. Boosting of SARS-CoV-2 immunity in nonhuman primates using an oral rhabdoviral vaccine. Vaccine. 2022, 40 (15), 1, 2342‒2351. https://doi.org/10.1016/j.vaccine.2021.12.063
- Sugawara K., Iwai M., Ito H., Tanaka M., Seto Y., Todo T. Oncolytic herpes virus G47∆ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. Ther. Oncolytics. 2021, 22, 129–142. https://doi.org/10.1016/j.omto.2021.05.004
- Liang Oncorine, the world first oncolytic virus medicine and its update in China. Current cancer drug targets. 2018, 18, 171–176. https://doi.org/10.2174/1568009618666171129221503.
- Johnson D. B., Puzanov I., Kelley M. C. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy. 2015, 7(6), 611‒ https://doi.org/10.2217/imt.15.35
- Andtbacka, Kaufman H. L., Collichio F., Amatruda T., Senzer N., Chesney J., Delman K.A., Spitler L.E., Puzanov I., Agarwala S.S., Milhem M., Cranmer L., Curti B., Lewis K., Ross M., Guthrie T., Linette G.P., Daniels G.A., Harrington K., Middleton M.R., Miller W.H. Jr, Zager J.S., Ye Y., Yao B., Li A., Doleman S., VanderWalde A., Gansert J., Coffin R.S. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Сlin Oncol. 2015, 33, 2780 –2788. https://doi.org/10.1200/JCO.2014.58.3377.
- De Pace N.G. Sulla scomparsa di un enorme cancro vegetante del callo dell’utero senza cura chirurgica. Ginecologia. 1912, 9, 82–88. (In Italian) Corpus ID: 162950580
- Pack G.T. Note on the experimental use of rabies vaccine for melanomatosis. Archives of Dermatology. 1950, 62(5), 694‒ https://doi.org/10.1001/archderm.1950.01530180083015
- Ammayappan A, Peng KW, Russell SJ. Characteristics of oncolytic vesicular stomatitis virus displaying tumor-targeting ligands. J Virol. 2013, 87(24), 13543‒135 https://doi.org/10.1128/JVI.02240-13
- Felt S.A., Grdzelishvili V. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update. J Gen Virol. 2017, (12), 2895‒2911. https://doi.org/10.1099/jgv.0.000980.
- Pol J.G., Zhang L., Bridle B.W., Stephenson K.B., Rességuier J., Hanson S., Chen L., Kazdhan N., Bramson J.L., Stojdl D.F., Wan Y., Lichty B.D. Maraba virus as a potent oncolytic vaccine vector. Molecular Therapy. 2014, 420‒ https://doi.org/10.1038/mt.2013.249
- Nagalo B.M., Zhou Y., Loeuillard E.J., Dumbauld C., Barro O., Elliott N.M., Baker A.T., Arora M., Bogenberger J.M., Meurice N., Petit J., Uson P.L.S. Jr, Aslam F., Raupach E., Gabere M., Basnakian A., Simoes C.C., Cannon M.J., Post S.R., Buetow K., Chamcheu J.C., Barrett M.T., Duda D.G., Jacobs B., Vile R., Barry M.A., Roberts L.R., Ilyas S., Borad M.J. Characterization of Morreton Virus (MORV) as a Novel Oncolytic Virotherapy Platform for Liver Cancers. Hepatology. 2022. https://doi.org/10.1002/HEP.32769.
- Zhang Y.,Tesfay M., Ferdous K., Taylor M., Gabere M., Simoes C., Dumbauld C., Barro O., Graham A.L., Washam C.L., Alkam D., Gies A., Chamcheu J.C, Byrum S.D., Post S.R., Kelly T., Borad M.J., Cannon M.J., Basnakian A., Nagalo B.M. In vivo Safety and Immunoactivity of Oncolytic Jurona Virus in Hepatocellular Carcinoma: A Comprehensive Proteogenomic Analysis. bioRxiv. 2022, 611–619. https://doi.org/1101/2022.09.09.507330
- Brun J., McManus D., Lefebvre C.,Hu K., Falls T., Atkins, Bell J.C., McCart J.A., Mahoney D., Stojdl D.F. Identification of genetically modified Maraba virus as an oncolytic rhabdovirus. Mol. Ther. 2010, 18, 1440–1449 (2010). https://doi.org//10. 1038/mt.2010.103
- Barber G.Vesicular Stomatitis Virus as an Oncolytic Vector. Viral Immunology. 2004, 17(4), 516–527. https://doi.org/10.1089/vim.2004.17.516
- Tzelepis F., Birdi H., Jirovec A., Boscardin S., Tanese de Souza, C., Hooshyar, M., Chen A., Sutherland K., Parks R.J., Werier J., Diallo J.S. Oncolytic Rhabdovirus Vaccine Boosts Chimeric Anti-DEC205 Priming for Effective Cancer Immunotherapy. Molecular Therapy – Oncolytics 2020, 19, 240–252.https://doi.org/10.1016/j. 2020.10.007
- Ebert O., Shinozaki K., Huang T.G., Savontaus M.J., García-Sastre A., Woo S.L. Oncolytic vesicular stomatitis virus for treatment of orthotopic hepatocellular carcinoma in immune-competent rats. Cancer Res. 2003, 63, 3605–3611. PMID: 12839948.
- Balachandran S., Barber G.N. Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell. 2004, 5, 51‒65. https://doi.org/1016/s1535-6108(03)00330-1
- Pol J.G., Zhang L., Bridle B.W., Stephenson K.B., Rességuier J., Hanson S., Chen L., Kazdhan N., Bramson J.L., Stojdl D.F., Wan Y., Lichty B.D. Maraba virus as a potent oncolytic vaccine vector. Molecular Therapy. 2014, 22(2), 420‒ https://doi.org/10.1038/mt.2013.249
- Seegers S.L., Frasier C., Greene S., Nesmelova I.V., Grdzelishvili V. Experimental Evolution Generates Novel Oncolytic Vesicular Stomatitis Viruses with Improved Replication in Virus-Resistant Pancreatic Cancer Cells. J Virol. 2020, 94(3), e01643‒19. https://doi.org/10.1128/JVI.01643-19
- Johnson J.E., Nasar F., Coleman J.W., Price R.E., Javadian A., Draper K., Lee M., Reilly P.A., Clarke D.K., Hendry R.M., Udem S.A. Neurovirulence properties of recombinant vesicular stomatitis virus vectors in non-human primates. Virology. 2007, 360, 36–49. https://doi.org/1016/j.virol.2006.10.026
- Cook J., Peng K.-W., Witzig T.E., Broski S.M., Villasboas J.C., Paludo J., Patnaik M., Rajkumar V., Dispenzieri A., Leung N., Buadi F., Bennani N., Ansell S.M., Zhang L., Packiriswamy N., Balakrishnan B., Brunton B., Giers M., Ginos B., Dueck A.C., Geyer S., Gertz M.A., Warsame R., Go R.S., Hayman S.R., Dingli D., Kumar S., Bergsagel L., Munoz J.L., Gonsalves W., Kourelis T., Muchtar E., Kapoor P., Kyle R.A., Lin Y., Siddiqui M., Fonder A., Hobbs M., Hwa L., Naik S., Russell S.J., Lacy M.Q.Clinical activity of singledose systemic oncolytic VSV virotherapy in patients with relapsed refractory T-cell lymphoma. Blood Adv. 2022, 6, 3268–3279. https://doi.org/10.1182/bloodadvances. 2021006631.
- Kelley J.M., Emerson S.U., Wagner R.R. The glycoprotein of vesicular stomatitis virus is the antigen that gives rise to and reacts with neutralizing antibody. Virol. 1972, 10, 1231–1235. https://doi.org/10.1128/jvi.10.6.1231-1235.1972
- Watters C.R., Barro O., Elliott N.M., Zhou Y., Gabere M., Raupach E., Baker A.T., Barrett M.T., Buetow K.H., Jacobs B., Seetharam M., Borad M.J., Nagalo B.M. Multi-modal efficacy of a chimeric vesiculovirus expressing the Morreton glycoprotein in sarcoma. Mol Ther Oncolytics. 2023, 29, 4‒ https://doi.org/10.1016/j.omto.2023.02.009.
- Sabirova T. Yu., Lozovaya O. Y., Yuzvenko L. V., Zhidkevich N. V., Dydenko L. F., Spivak N. Ya. Phytorabdoviruses as a regressive factor plant tumor. Dopovidi Natsionalnoi Akademii Nauk Ukrainy. 2012, 10, 177‒180. (In Ukrainian). http://dspace.nbuv.gov.ua/handle/123456789/84649
- Spivak N. Ya., Yuzvenko L. V., Lozova O. J., Levchuk O. B., Didenko L. F. Nikolaychuk M. V., Potebnya G. P., Tanasienko O. A., Rudik M. P., Shepel O. A., Yanchiy R. P., Voznesenskaya T. Yu. Induction of apoptosis of malignant cells of the sarcoma 37 by phytorabdovirus BBV. Bulletin of Uzhgorod University. Series Biology. 2010, 27, 40‒41.
- Travassos da Rosa A.P., Tesh R.B., Travassos da Rosa J.F., Herve J.P., Main A.J. Carajas and Maraba viruses, two new vesiculoviruses isolated from phlebotomine sand flies in Brazil. Am J Trop Med Hyg. 1984, 33(5), 999 –1006. https://doi.org/4269/ajtmh.1984.33.999
- Ilkow C.S., Swift S.L., Bell J.C., Diallo J.S. From Scourge to Cure: Tumour-Selective Viral Pathogenesis as a New Strategy against Cancer. PLoS Pathog. 2014, 10(1), https://doi.org/10.1371/journal.ppat.1003836
- Tong J.G., Valdes Y.R., Sivapragasam M., Barrett J.W., Bell J.C., Stojdl D., DiMattia G.E., Shepherd T.G. Spatial and temporal epithelial ovarian cancer cell heterogeneity impacts Maraba virus oncolytic potential. BMC Cancer. 2017, 17(1), 594. https://doi.org/1186/s12885-017-3600-2
- Alkayyal AA, Tai LH, Kennedy MA, de Souza C.T., Zhang J., Lefebvre C., Sahi S., Ananth A.A., Mahmoud A.B., Makrigiannis A.P., Cron G.O., Macdonald B., Marginean E.C., Stojdl D.F., Bell J.C., Auer R.C. NK-Cell Recruitment Is Necessary for Eradication of Peritoneal Carcinomatosis with an IL12- Expressing Maraba Virus Cellular Vaccine. Cancer Immunol Res. 2017, 5(3), 211–221. https://doi.org/1158/2326-6066.CIR-16-0162
- Zhang J., Tai L.H., Ilkow C.S., Alkayyal A.A., Ananth A.A., de Souza C.T., Wang J., Sahi S., Ly L., Lefebvre C., Falls T.J., Stephenson K.B., Mahmoud A.B., Makrigiannis A.P., Lichty B.D., Bell J.C., Stojdl D.F., Auer R.C. Maraba MG1 virus enhances natural killer cell function via conventional dendritic cells to reduce postoperative metastatic disease. Mol Ther. 2014, 22(7), 1320–1332.https://doi.org/ 1038/mt.2014.60
- Stojdl D.F., Lichty B.D., Oever B.R., Paterson J.M., Power A.T., Knowles S., Marius R., Reynard J., Poliquin L., Atkins H., Brown E.G., Durbin R.K., Durbin J.E., Hiscott J., Bell J.C. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell. 2003, 4, 263–275. https://doi.org/1016/s1535-6108(03)00241-1
- Tesh R.B., Boshell J., Modi G.B., Morales A., Young D.G., Corredor A., Ferro de Carrasquilla C., de Rodriguez C., Walters L.L., Gaitan M. Natural infection of humans, animals, and phlebotomine sand flies with the Alagoas serotype of vesicular stomatitis virus in Colombia. Am. J. Trop. Med. Hyg. 1987, 36, 653–661. https://doi.org/10.4269/ajtmh.1987.36.653
- Travassos da Rosa A.P., Mather T.N., Takeda T., Whitehouse C.A., Shope R.E., Popov V.L., Guzman H., Coffey L., Araujo T.P., Tesh R. Two new rhabdoviruses (Rhabdoviridae) isolated from birds during surveillance for arboviral encephalitis, northeastern United States. Emerg Infect Dis. 2002, 8(6), 614‒8. https://doi.org/10.3201/eid0806.010384
Buchatskyi L.P.
ORCID: 0000-0003-1350-7954
Rud Yu.P.
ORCID: 0000-0001-6927-5377
Zaloilo O.V.
ORCID: 0000-0002-0513-1611
Zaloilo I.A.
ORCID: 0000-0001-8878-0593
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2023