ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 4, 2023
P. 30-42, Bibliography 83, Engl.
UDC: [578.8:57.083]:606
DOI: https://doi.org/10.15407/biotech16.04.031
Full text: (PDF in English)
Institute of Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
Cardiovascular diseases are currently the most common cause of death worldwide. In this regard, experimental and clinical studies of the effectiveness of therapy for ischemic and non-ischemic heart diseases using stem cells are relevant.
The purpose of this review was to evaluate the prospects of using cord blood stem cells in the treatment of cardiovascular diseases.
Methods. The following databases were searched: «BIGG International Database of GRADE guidelines», “Database of GRADE EtD's and Guidelines”, “Dynamed”, “ebmafrica.net”, “ECRI”, “MAGIC authoring and publication platform (MAGICapp)”, “National Health and Medical Research Council (NHMRC) portal”, “NICE Evidence”, “Pubmed”, “TRIP database”, “U.S. Preventive Services Task Force”.
Results. An analysis of research related to this problem, which was conducted in recent years, was made, and considerations regarding the prospects of using umbilical cord blood in the treatment of diseases of the cardiovascular system were outlined.
Conclusions. Despite some successes, realizing the full potential of cord blood stem cells in the treatment of cardiovascular diseases still requires further severe, targeted, and well-funded research and expanded clinical trials.
Key words: cardiovascular diseases, umbilical cord blood, stem cells.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2023
References
1. Csöbönyeiová M., Beerová N., Klein M., Debreová-Čeháková M., Danišovič Ľ. Cell-Based and Selected Cell-Free Therapies for Myocardial Infarction: How Do They Compare to the Current Treatment Options? Int J Mol Sci. 2022, 23(18), 10314. https://doi.org/10.3390/ijms231810314
2. Gulevsky A. K., Abakumova Ye. S., Schenyavsky I. I. Biopreparations using in the ischemic heart injury therapy. Biotechnolgia Acta. 2013, 6(2), 43–57. https://doi.org/10.15407/biotech6.02.043
3. Gulevsky A. K., Schenyavsky I. I., Abakumova Ye. S. Cell transplantation in the cardiomyoplasty of ischemic heart injury. Biotechnologia Acta. 2011, 4(1), 60–73.
4. Bolli R., Solankhi M., Tang X.L., Kahlon A. Cell therapy in patients with heart failure: a comprehensive review and emerging concepts. Cardiovasc Res. 2022, 118(4), 951–976. https://doi.org/10.1093/cvr/cvab135
5. Der Sarkissian S., Lévesque T., Noiseux N. Optimizing stem cells for cardiac repair: Current status and new frontiers in regenerative cardiology. World J Stem Cells. 2017, 9(1):9–25. https://doi.org/10.4252/wjsc.v9.i1.9
6. Margiana R., Markov A., Zekiy A.O., Hamza M.U., Al-Dabbagh K.A., Al-Zubaidi S.H., Hameed N.M., Ahmad I., Sivaraman R., Kzar H.H., Al-Gazally M.E., Mustafa Y.F., Siahmansouri H. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther. 2022, 13(1), 366. https://doi.org/10.1186/s13287-022-03054-0
7. Medhekar S.K., Shende V.S., Chincholkar A.B. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem J Cell for Cardiac Regeneration- a Review. Int Stem Cells. 2016, 9(1), 21–30. https://doi.org/10.15283/ijsc.2016.9.1.21
8. Ma J, Zhao Y, Sun L, Sun X, Zhao X, Sun X, Qian H, Xu W, Zhu W. Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Translational Medicine. 2017, 6(1), 51–59. https://doi.org/10.5966/sctm.2016-0038
9. Rabbani S., Soleimani M., Sahebjam M., Imani M., Nassiri S.M., Atashi A., Daliri Joupari M., Ghiaseddin .A, Latifpour M., Ahmadi Tafti S.H. Effects of Endothelial and Mesenchymal Stem Cells on Improving Myocardial Function in a Sheep Animal Model. J Tehran Heart Cent. 2017, 12(2), 65–71.
10. Perez-Estenaga I., Prosper F., and Pelacho B. Allogeneic Mesenchymal Stem Cells and Biomaterials: The Perfect Match for Cardiac Repair? Int J Mol Sci. 2018, 19(10), 3236. https://doi.org/10.3390/ijms19103236
11. Roura S., Pujal J.M., Gálvez-Montón C., Bayes-Genis A. Impact of umbilical cord blood-derived mesenchymal stem cells on cardiovascular research. Biomed Res Int. 2015, 2015, 975302. https://doi.org/10.1155/2015/975302
12. Isomi M, Sadahiro T., Ieda M. Progress and Challenge of Cardiac Regeneration to Treat Heart Failure. J Cardiol. 2019, 73(2), 97-101. https://doi.org/10.1016/j.jjcc.2018.10.002
13. Lalu M.M., Mazzarello S., Zlepnig J., Dong Y.Y.R., Montroy J., McIntyre L., Devereaux P.J., Stewart D.J., David Mazer C., Barron C.C., McIsaac D.I., Fergusson D.A. Safety and Efficacy of Adult Stem Cell Therapy for Acute Myocardial Infarction and Ischemic Heart Failure (SafeCell Heart): A Systematic Review and Meta-Analysis. Stem Cells Transl. Med. 2018, 7(12), 857–866.https://doi.org/10.1002/sctm.18-0120https://doi.org/10.1002/sctm.18-0120https://doi.org/10.1002/sctm.18-0120
14. Lemcke H., Voronina N., Steinhoff G., David R. Recent Progress in Stem Cell Modification for Cardiac Regeneration. Stem Cells Int. 2018, 2018, 1909346. https://doi.org/10.1155/2018/1909346
15. Peregud-Pogorzelska M., Przybycień K., Baumert B., Kotowski M., Pius-Sadowska E., Safranow K., Peregud-Pogorzelski J., Kornacewicz-Jach Z., Paczkowska E., Machaliński B. The Effect of Intracoronary Infusion of Autologous Bone Marrow-Derived Lineage-Negative Stem/Progenitor Cells on Remodeling of Post-Infarcted Heart in Patient with Acute Myocardial Infarction. Int J Med Sci. 2020, 17(8), 985–994. https://doi.org/10.7150/ijms.42561
16. Zang L., Li Y., Hao H., Liu J., Cheng Y., Li B., Yin Y., Zhang Q., Gao F., Wang H., Gu S., Li J., Lin F., Zhu Y., Tian G., Chen Y., Gu W., Du J., Chen K., Guo Q., Yang G., Pei Y., Yan W., Wang X., Meng J., Zhang S., Ba J., Lyu Z., Dou J., Han W., Mu Y. Efficacy and safety of umbilical cord-derived mesenchymal stem cells in Chinese adults with type 2 diabetes: a single-center, double-blinded, randomized, placebo-controlled phase II trial. Stem Cell Res Ther. 2022, 13(1), 180. https://doi.org/10.1186/s13287-022-02848-6
17. Wang Z., Wang L., Su X., Pu J., Jiang M., He B. Rational transplant timing and dose of mesenchymal stromal cells in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. Stem Cell Res Ther. 2017, 8(1), 21. https://doi.org/10.1186/s13287-016-0450-9
18. Afjeh-Dana E., Naserzadeh P., Moradi E., Hosseini N., Seifalian A.M., Ashtari B. Stem Cell Differentiation into Cardiomyocytes: Current Methods and Emerging Approaches. Stem Cell Rev Rep. 2022, 18(8), 2566–2592. https://doi.org/10.1007/s12015-021-10280-1
19. Bao L., Meng Q., Li Y., Deng S., Yu Z., Liu Z., Zhang L., Fan H. C-Kit Positive Cardiac Stem Cells and Bone Marrow-Derived Mesenchymal Stem Cells Synergistically Enhance Angiogenesis and Improve Cardiac Function After Myocardial Infarction in a Paracrine Manner. J Card Fail. 2017, 23(5), 403–415. https://doi.org/10.1016/j.cardfail.2017.03.002
20. Burkhart H.M., Qureshi M.Y., Rossano J.W., Cantero Peral S., O'Leary P.W., Hathcock M., Kremers W., Nelson T.J.; Wanek HLHS Consortium Clinical Pipeline. Autologous stem cell therapy for hypoplastic left heart syndrome: Safety and feasibility of intraoperative intramyocardial injections. J Thorac Cardiovasc Surg. 2019, 158(6), 1614–1623. https://doi.org/10.1016/j.jtcvs.2019.06.001
21. Gong X., Wang P., Wu Q., Wang S., Yu L, and Wang G. Human umbilical cord blood derived mesenchymal stem cells improve cardiac function in cTnT(R141W) transgenic mouse of dilated cardiomyopathy. Eur J Cell Biol. 2016, 95, 57–67. https://doi.org/10.1016/j.ejcb.2015.11.003
22. Mahmud S., Alam S., Emon N.U., Boby U.H., Kamruzzaman, Ahmed F., Monjur-Al-Hossain A.S.M., Tahamina A., Rudra S., Ajrin M. Opportunities and challenges in stem cell therapy in cardiovascular diseases: Position standing in 2022. Saudi Pharm J. 2022, 30(9), 1360–1371. https://doi.org/10.1016/j.jsps.2022.06.017
23. Bittle G.J., Morales D., Deatrick K.B., Parchment N., Saha P., Mishra R., Sharma S., Pietris N., Vasilenko A., Bor C., Ambastha C., Gunasekaran M., Li D., Kaushal S. Stem Cell Therapy for Hypoplastic Left Heart Syndrome: Mechanism, Clinical Application, and Future Directions. Circ Res. 2018, 123(2), 288–300. https://doi.org/10.1161/CIRCRESAHA.117.311206
24. Botello-Flores Y.A., Yocupicio-Monroy M., Balderrábano-Saucedo N., Contreras-Ramos A. A systematic review on the role of MSC-derived exosomal miRNAs in the treatment of heart failure. Mol Biol Rep. 2022, 49(9), 8953–8973. https://doi.org/10.1007/s11033-022-07385-2
25. Han Y., Yang J., Fang J., Zhou Y., Candi E., Wang J., Hua D., Shao C., Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022, 7(1), 92. https://doi.org/10.1038/s41392-022-00932-0
26. Mabotuwana N.S., Rech L., Lim J., Hardy S.A., Murtha L.A., Rainer P.P., Boyle A.J. Paracrine Factors Released by Stem Cells of Mesenchymal Origin and their Effects in Cardiovascular Disease: A Systematic Review of Pre-clinical Studies. Stem Cell Rev Rep. 2022, 18(8), 2606–2628. https://doi.org/10.1007/s12015-022-10429-6
27. Neuber S., Emmert M.Y., Nazari-Shafti T.Z. Hopes and Hurdles of Employing Mesenchymal Stromal Cells in the Treatment of Cardiac Fibrosis. Int J Mol Sci. 2021, 22(23), 13000. https://doi.org/10.3390/ijms222313000
28. Yuan Z., Yan K., Wang J. Overexpression of integrin β2 improves migration and engraftment of adipose-derived stem cells and augments angiogenesis in myocardial infarction. Ann Transl Med. 2022, 10(16), 863. https://doi.org/10.21037/atm-22-3339
29. Palmquist-Gomes P., Pérez-Pomares J.M., Guadix J.A. Cell-based therapies for the treatment of myocardial infarction: lessons from cardiac regeneration and repair mechanisms in non-human vertebrates. Heart Fail Rev. 2019, 24(1), 133–142. https://doi.org/10.1007/s10741-018-9750-8
30. Huang H., Huang W. Regulation of Endothelial Progenitor Cell Functions in Ischemic Heart Disease: New Therapeutic Targets for Cardiac Remodeling and Repair. Front Cardiovasc Med. 2022, 9, 896782. https://doi.org/10.3389/fcvm.2022.896782
31. Tompkins B.A., Balkan W., Winkler J., Gyöngyösi M., Goliasch G., Fernández-Avilés F., Hare J.M. Preclinical Studies of Stem Cell Therapy for Heart Disease. Circ Res. 2018, 122(7), 1006–1020. https://doi.org/10.1161/CIRCRESAHA.117.312486
32. Guo L., Liu M.F., Huang J.N., Li J.M., Jiang J., Wang J.A. Role of interleukin-15 in cardiovascular diseases. J Cell Mol Med. 2020, 24(13), 7094–7101. https://doi.org/10.1111/jcmm.15296
33. Venugopal H., Hanna A., Humeres C., Frangogiannis N.G. Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells. 2022, 11(9), 1386. https://doi.org/10.3390/cells11091386
34. Gao Q., Guo M., Zeng W., Wang Y., Yang L., Pang X., Li H., Suo Y., Jiang X., Yu C. Matrix metalloproteinase 9 secreted by hypoxia cardiac fibroblasts triggers cardiac stem cell migration in vitro. Stem Cells Int. 2015, 2015, 836390. https://doi.org/10.1155/2015/836390
35. Deng B., Zhang X., Liang Y., Jiang H. Huang W., Wu Y., Deng W. Nonadherent culture method promotes MSC-mediated vascularization in myocardial infarction via miR-519d/VEGFA pathway. Stem Cell Res Ther. 2020, 11(1), 266. https://doi.org/10.1186/s13287-020-01780-x
36. Becirovic-Agic M., Chalise U., Daseke M.J. 2nd, Konfrst S., Salomon J.D., Mishra P.K., Lindsey M.L. Infarct in the Heart: What's MMP-9 Got to Do with It? Biomolecules. 2021, 11(4), 491. https://doi.org/10.3390/biom11040491
37. Wang K.C., Yang L.Y., Lee J.E., Wu V., Chen T.F., Hsieh S.T., Kuo M.F. Combination of indirect revascularization and endothelial progenitor cell transplantation improved cerebral perfusion and ameliorated tauopathy in a rat model of bilateral ICA ligation. Stem Cell Res Ther. 2022, 13(1), 516. https://doi.org/10.1186/s13287-022-03196-1
38. Mai J., Wang F., Qiu Q., Tang B., Lin Y., Luo N., Yuan W., Wang X., Chen Q., Wang J., Chen Y. Tachycardia pacing induces myocardial neovascularization and mobilizes circulating endothelial progenitor cells partly via SDF-1 pathway in canines. Heart Vessels. 2016, 31(2), 230–240. https://doi.org/10.1007/s00380-014-0613-5
39. Chin S.P., Maskon O., Tan C.S., Anderson J.E., Wong C.Y., Hassan H.H.C., Choor C.K., Fadilah S.A.W., Cheong S.K. Synergistic effects of intracoronary infusion of autologous bone marrow-derived mesenchymal stem cells and revascularization procedure on improvement of cardiac function in patients with severe ischemic cardiomyopathy. Stem Cell Investig. 2021, 8, 2. https://doi.org/10.21037/sci-2020-026
40. Heldman A.W., DiFede D.L., Fishman J.E., Zambrano J.P., Trachtenberg B.H., Karantalis V., Mushtaq M., Williams A.R., Suncion V.Y., McNiece I.K., Ghersin E., Soto V., Lopera G., Miki R., Willens H., Hendel R., Mitrani R., Pattany P., Feigenbaum G., Oskouei B., Byrnes J., Lowery M.H., Sierra J., Pujol M.V., Delgado C., Gonzalez P.J., Rodriguez J.E., Bagno L.L., Rouy D., Altman P., Foo C.W., da Silva J., Anderson E., Schwarz R., Mendizabal A., Hare J.M. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT randomized trial. JAMA. 2014, 311, 62–73. https://doi.org/10.1001/jama.2013.282909
41. Karantalis V, DiFede DL, Gerstenblith G, Pham S., Symes J., Zambrano J.P., Fishman J., Pattany P., McNiece I., Conte J., Schulman S., Wu K., Shah A., Breton E., Davis-Sproul J., Schwarz R., Feigenbaum G., Mushtaq M., Suncion V.Y., Lardo A.C., Borrello I., Mendizabal A., Karas T.Z., Byrnes J., Lowery M., Heldman A.W., Hare J.M. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The prospective randomized study of mesenchymal stem cell therapy in patients undergoing cardiac surgery (prometheus) trial. Circ Res. 2014, 114, 1302–1310. https://doi.org/10.1161/CIRCRESAHA.114.303180
42. Razeghian-Jahromi I., Matta A.G., Canitrot R., Zibaeenezhad M.J., Razmkhah M., Safari A., Nader V., Roncalli J. Surfing the clinical trials of mesenchymal stem cell therapy in ischemic cardiomyopathy. Stem Cell Res Ther. 2021, 12(1), 361. https://doi.org/10.1186/s13287-021-02443-1
43. Najafi R., Sharifi A.M. Deferoxamine preconditioning potentiates mesenchymal stem cell homing in vitro and in streptozotocin-diabetic rats. Expert Opin Biol Ther. 2013, 13(7), 959–972. https://doi.org/10.1517/14712598.2013.782390
44. White I.A., Sanina C., Balkan W., Hare J.M. Mesenchymal Stem Cells in Cardiology. Methods Mol Biol. 2016, 1416, 55–87. https://doi.org/10.1007/978-1-4939-3584-0_4
45. Deuse T., Stubbendorff M., Tang-Quan K., Phillips .N, Kay M.A., Eiermann T., Phan T.T., Volk H.D., Reichenspurner H., Robbins R.C., Schrepfer S. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplantation. 2011, 20(5), 655–667. https://doi.org/10.3727/096368910X536473
46. Song H.F., He S., Li S.H., Yin W.J., Wu J., Guo J., Shao Z.B., Zhai X.Y., Gong H., Lu L., Wei F., Weisel R.D., Xie J., Li R.K. Aged Human Multipotent Mesenchymal Stromal Cells Can Be Rejuvenated by Neuron-Derived Neurotrophic Factor and Improve Heart Function After Injury. JACC Basic Transl Sci. 2017, 2(6), 702–716. https://doi.org/10.1016/j.jacbts.2017.07.014
47. Donders R, Bogie J.F.J., Ravanidis S., Gervois P., Vanheusden M., Marée R., Schrynemackers M., Smeets H.J.M., Pinxteren J., Gijbels K., Walbers S., Mays R.W., Deans R., Van Den Bosch L., Stinissen P., Lambrichts I., Gyselaers W., Hellings N. Human Wharton’s jelly-derived stem cells display a distinct immunomodulatory and proregenerative transcriptional signature compared to bone marrow-derived stem cells. Stem Cells Dev. 2018, 27, 65–84. https://doi.org/10.1089/scd.2017.0029
48. Yang W.Z., Zhang Y., Wu F., Min W.P., Minev B., Zhang M., Luo X.L., Ramos F., Ichim T.E., Riordan N.H., Hu X. Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions. Journal of Translational Medicine. 2010, 8, 75. https://doi.org/10.1186/1479-5876-8-75
49. Dehn J., Spellman S., Hurley C.K., Shaw B.E., Barker J.N., Burns L.J., Confer D.L., Eapen M., Fernandez-Vina M., Hartzman R., Maiers M., Marino S.R., Mueller C., Perales M.A., Rajalingam R., Pidala J. Selection of unrelated donors and cord blood units for hematopoietic cell transplantation: guidelines from the NMDP/CIBMTR. Blood. 2019, 134(12), 924–934. https://doi.org/10.1182/blood.2019001212
50. Shi P.A., Luchsinger L.L., Greally J.M., Delaney C.S. Umbilical cord blood: an undervalued and underutilized resource in allogeneic hematopoietic stem cell transplant and novel cell therapy applications. Curr Opin Hematol. 2022, 29(6), 317-326. https://doi.org/10.1097/MOH.0000000000000732
51. Spellman S.R. Hematology 2022-what is complete HLA match in 2022? Hematology Am Soc Hematol Educ Program. 2022, 2022(1), 83–89. https://doi.org/10.1182/hematology.2022000326
52. Ashbridge B., Zehir A., Lubin M., Barker J.N., Moore M.A. Evaluation of Initial Telomere Length and Changes after Transplantation in Adult Double-Unit Cord Blood Transplant Recipients. Biol Blood Marrow Transplant. 2015, 21(7), 1334–1336. https://doi.org/10.1016/j.bbmt.2015.04.006
53. Lai T.P., Verhulst S., Dagnall C.L., Hutchinson A., Spellman S.R., Howard A., Katki H.A., Levine J.E., Saber W., Aviv A., Gadalla S.M. Decoupling blood telomere length from age in recipients of allogeneic hematopoietic cell transplant in the BMT-CTN 1202. Front Immunol. 2022, 13, 966301. https://doi.org/10.3389/fimmu.2022.966301
54. Goldberg J.L., and Laughlin M.J. UC blood hematopoietic stem cells and therapeutic angiogenesis. Cytotherapy. 2007; 9(1), 4–13. https://doi.org/10.1080/14653240601139846
55. Chen Z., Chen L., Zeng C., Wang W.E. Functionally Improved Mesenchymal Stem Cells to Better Treat Myocardial Infarction. Stem Cells Int. 2018, 2018, 7045245. https://doi.org/10.1155/2018/7045245
56. Copeland N., Harris D., and Gaballa M.A. Human umbilical cord blood stem cells, myocardial infarction and stroke. Clin Med. 2009, 9(4), 342–345. https://doi.org/10.7861/clinmedicine.9-4-342
57. Katarzyna R. Adult stem cell therapy for cardiac repair in patients after acute myocardial infarction leading to ischemic heart failure: an overview of evidence from the recent clinical trials. Curr Cardiol Rev. 2017, 13(3), 223–231. https://doi.org/10.2174/1573403X13666170502103833
58. Rangappa S., Makkar R., and Forrester J. Review article: current status of myocardial regeneration: new cell sources and new strategies. J Cardiovasc Pharmacol Ther. 2010, 15(4), 338–343. https://doi.org/10.1177/1074248410376382
59. Cui Y.X., Kafienah Wael, Suleiman M.S., Ascione R. A new methodological sequence to expand and transdifferentiate human umbilical cord blood derived CD133 cells into a cardiomyocyte-like phenotype. Stem Cell Reviews and Reports. 2013, 9(3), 350–359. https://doi.org/10.1007/s12015-011-9316-9
60. Hare J.M., Traverse J.H., Henry T.D., Dib N., Strumpf R.K., Schulman S.P., Gerstenblith G., DeMaria A.N., Denktas A.E., Gammon R.S., Hermiller J.B. Jr. Reisman M.A., Schaer G.L., Sherman W. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009, 54, 2277–2286. https://doi.org/10.1016/j.jacc.2009.06.055https://doi.org/10.1016/j.jacc.2009.06.055
61. Bartolucci J., Verdugo F.J., González P.L., Larrea R.E., Abarzua E., Goset C., Rojo P., Palma I., Lamich R., Pedreros P.A., Valdivia G., Lopez V.M., Nazzal C., Alcayaga-Miranda F., Cuenca J., Brobeck M.J., Patel A.N., Figueroa F.E., Khoury M. Safety and Efficacy of the Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells in Patients With Heart Failure: A Phase 1/2 Randomized Controlled Trial (RIMECARD Trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]). Circ Res. 2017, 121(10), 1192̶1204. https://doi.org/10.1161/CIRCRESAHA.117.310712
62. Fedevych O., Chasovskyi K., Vorobiova G., Zhovnir V., Makarenko M., Kurkevych A., Maksymenko A., Yemets I. Open cardiac surgery in the first hours of life using autologous umbilical cord blood. Eur J Cardiothorac Surg. 2011, 40(4), 985–989. https://doi.org/10.1016/j.ejcts.2011.01.011
63. Chasovskyi K., Fedevych O., Vorobiova G., Zhovnir V., Maksimenko A., Boychenko O., Lysak Y., Cohen G., Yemets I. Arterial switch operation in the first hours of life using autologous umbilical cord blood. Ann Thorac Surg. 2012, 93(5), 1571–1576. https://doi.org/10.1016/j.athoracsur.2012.01.104
64. Badria A.F., Koutsoukos P.G., Mavrilas D. Decellularized tissue-engineered heart valves calcification: what do animal and clinical studies tell us? J Mater Sci Mater Med. 2020, 31(12), 132. https://doi.org/10.1007/s10856-020-06462-x
65. Lutter G., Puehler T., Cyganek L., Seiler J., Rogler A., Herberth T., Knueppel P., Gorb S.N., Sathananthan J., Sellers S., Müller O.J., Frank D., Haben I. Biodegradable Poly-ε-Caprolactone Scaffolds with ECFCs and iMSCs for Tissue-Engineered Heart Valves. Int J Mol Sci. 2022, 23(1), 527. https://doi.org/10.3390/ijms23010527
66. Filová E, Straka F, Miřejovský T, Mašín J, Bačáková L. Tissue-engineered heart valves. Physiol Res. 2009, 58 (2), S141–S158. https://doi.org/10.33549/physiolres.931919
67. Pati F., Jang J., Ha D.H., Won Kim S., Rhie J.W., Shim J.H., Kim D.H., Cho D.W. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014, 5, 3935.
1. Csöbönyeiová M., Beerová N., Klein M., Debreová-Čeháková M., Danišovič Ľ. Cell-Based and Selected Cell-Free Therapies for Myocardial Infarction: How Do They Compare to the Current Treatment Options? Int J Mol Sci. 2022, 23(18), 10314. https://doi.org/10.3390/ijms231810314
2. Gulevsky A. K., Abakumova Ye. S., Schenyavsky I. I. Biopreparations using in the ischemic heart injury therapy. Biotechnolgia Acta. 2013, 6(2), 43–57. https://doi.org/10.15407/biotech6.02.043
3. Gulevsky A. K., Schenyavsky I. I., Abakumova Ye. S. Cell transplantation in the cardiomyoplasty of ischemic heart injury. Biotechnologia Acta. 2011, 4(1), 60–73.
4. Bolli R., Solankhi M., Tang X.L., Kahlon A. Cell therapy in patients with heart failure: a comprehensive review and emerging concepts. Cardiovasc Res. 2022, 118(4), 951–976. https://doi.org/10.1093/cvr/cvab135
5. Der Sarkissian S., Lévesque T., Noiseux N. Optimizing stem cells for cardiac repair: Current status and new frontiers in regenerative cardiology. World J Stem Cells. 2017, 9(1):9–25. https://doi.org/10.4252/wjsc.v9.i1.9
6. Margiana R., Markov A., Zekiy A.O., Hamza M.U., Al-Dabbagh K.A., Al-Zubaidi S.H., Hameed N.M., Ahmad I., Sivaraman R., Kzar H.H., Al-Gazally M.E., Mustafa Y.F., Siahmansouri H. Clinical application of mesenchymal stem cell in regenerative medicine: a narrative review. Stem Cell Res Ther. 2022, 13(1), 366. https://doi.org/10.1186/s13287-022-03054-0
7. Medhekar S.K., Shende V.S., Chincholkar A.B. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem J Cell for Cardiac Regeneration- a Review. Int Stem Cells. 2016, 9(1), 21–30. https://doi.org/10.15283/ijsc.2016.9.1.21
8. Ma J, Zhao Y, Sun L, Sun X, Zhao X, Sun X, Qian H, Xu W, Zhu W. Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Translational Medicine. 2017, 6(1), 51–59. https://doi.org/10.5966/sctm.2016-0038
9. Rabbani S., Soleimani M., Sahebjam M., Imani M., Nassiri S.M., Atashi A., Daliri Joupari M., Ghiaseddin .A, Latifpour M., Ahmadi Tafti S.H. Effects of Endothelial and Mesenchymal Stem Cells on Improving Myocardial Function in a Sheep Animal Model. J Tehran Heart Cent. 2017, 12(2), 65–71.
10. Perez-Estenaga I., Prosper F., and Pelacho B. Allogeneic Mesenchymal Stem Cells and Biomaterials: The Perfect Match for Cardiac Repair? Int J Mol Sci. 2018, 19(10), 3236. https://doi.org/10.3390/ijms19103236
11. Roura S., Pujal J.M., Gálvez-Montón C., Bayes-Genis A. Impact of umbilical cord blood-derived mesenchymal stem cells on cardiovascular research. Biomed Res Int. 2015, 2015, 975302. https://doi.org/10.1155/2015/975302
12. Isomi M, Sadahiro T., Ieda M. Progress and Challenge of Cardiac Regeneration to Treat Heart Failure. J Cardiol. 2019, 73(2), 97-101. https://doi.org/10.1016/j.jjcc.2018.10.002
13. Lalu M.M., Mazzarello S., Zlepnig J., Dong Y.Y.R., Montroy J., McIntyre L., Devereaux P.J., Stewart D.J., David Mazer C., Barron C.C., McIsaac D.I., Fergusson D.A. Safety and Efficacy of Adult Stem Cell Therapy for Acute Myocardial Infarction and Ischemic Heart Failure (SafeCell Heart): A Systematic Review and Meta-Analysis. Stem Cells Transl. Med. 2018, 7(12), 857–866.https://doi.org/10.1002/sctm.18-0120https://doi.org/10.1002/sctm.18-0120https://doi.org/10.1002/sctm.18-0120
14. Lemcke H., Voronina N., Steinhoff G., David R. Recent Progress in Stem Cell Modification for Cardiac Regeneration. Stem Cells Int. 2018, 2018, 1909346. https://doi.org/10.1155/2018/1909346
15. Peregud-Pogorzelska M., Przybycień K., Baumert B., Kotowski M., Pius-Sadowska E., Safranow K., Peregud-Pogorzelski J., Kornacewicz-Jach Z., Paczkowska E., Machaliński B. The Effect of Intracoronary Infusion of Autologous Bone Marrow-Derived Lineage-Negative Stem/Progenitor Cells on Remodeling of Post-Infarcted Heart in Patient with Acute Myocardial Infarction. Int J Med Sci. 2020, 17(8), 985–994. https://doi.org/10.7150/ijms.42561
16. Zang L., Li Y., Hao H., Liu J., Cheng Y., Li B., Yin Y., Zhang Q., Gao F., Wang H., Gu S., Li J., Lin F., Zhu Y., Tian G., Chen Y., Gu W., Du J., Chen K., Guo Q., Yang G., Pei Y., Yan W., Wang X., Meng J., Zhang S., Ba J., Lyu Z., Dou J., Han W., Mu Y. Efficacy and safety of umbilical cord-derived mesenchymal stem cells in Chinese adults with type 2 diabetes: a single-center, double-blinded, randomized, placebo-controlled phase II trial. Stem Cell Res Ther. 2022, 13(1), 180. https://doi.org/10.1186/s13287-022-02848-6
17. Wang Z., Wang L., Su X., Pu J., Jiang M., He B. Rational transplant timing and dose of mesenchymal stromal cells in patients with acute myocardial infarction: a meta-analysis of randomized controlled trials. Stem Cell Res Ther. 2017, 8(1), 21. https://doi.org/10.1186/s13287-016-0450-9
18. Afjeh-Dana E., Naserzadeh P., Moradi E., Hosseini N., Seifalian A.M., Ashtari B. Stem Cell Differentiation into Cardiomyocytes: Current Methods and Emerging Approaches. Stem Cell Rev Rep. 2022, 18(8), 2566–2592. https://doi.org/10.1007/s12015-021-10280-1
19. Bao L., Meng Q., Li Y., Deng S., Yu Z., Liu Z., Zhang L., Fan H. C-Kit Positive Cardiac Stem Cells and Bone Marrow-Derived Mesenchymal Stem Cells Synergistically Enhance Angiogenesis and Improve Cardiac Function After Myocardial Infarction in a Paracrine Manner. J Card Fail. 2017, 23(5), 403–415. https://doi.org/10.1016/j.cardfail.2017.03.002
20. Burkhart H.M., Qureshi M.Y., Rossano J.W., Cantero Peral S., O'Leary P.W., Hathcock M., Kremers W., Nelson T.J.; Wanek HLHS Consortium Clinical Pipeline. Autologous stem cell therapy for hypoplastic left heart syndrome: Safety and feasibility of intraoperative intramyocardial injections. J Thorac Cardiovasc Surg. 2019, 158(6), 1614–1623. https://doi.org/10.1016/j.jtcvs.2019.06.001
21. Gong X., Wang P., Wu Q., Wang S., Yu L, and Wang G. Human umbilical cord blood derived mesenchymal stem cells improve cardiac function in cTnT(R141W) transgenic mouse of dilated cardiomyopathy. Eur J Cell Biol. 2016, 95, 57–67. https://doi.org/10.1016/j.ejcb.2015.11.003
22. Mahmud S., Alam S., Emon N.U., Boby U.H., Kamruzzaman, Ahmed F., Monjur-Al-Hossain A.S.M., Tahamina A., Rudra S., Ajrin M. Opportunities and challenges in stem cell therapy in cardiovascular diseases: Position standing in 2022. Saudi Pharm J. 2022, 30(9), 1360–1371. https://doi.org/10.1016/j.jsps.2022.06.017
23. Bittle G.J., Morales D., Deatrick K.B., Parchment N., Saha P., Mishra R., Sharma S., Pietris N., Vasilenko A., Bor C., Ambastha C., Gunasekaran M., Li D., Kaushal S. Stem Cell Therapy for Hypoplastic Left Heart Syndrome: Mechanism, Clinical Application, and Future Directions. Circ Res. 2018, 123(2), 288–300. https://doi.org/10.1161/CIRCRESAHA.117.311206
24. Botello-Flores Y.A., Yocupicio-Monroy M., Balderrábano-Saucedo N., Contreras-Ramos A. A systematic review on the role of MSC-derived exosomal miRNAs in the treatment of heart failure. Mol Biol Rep. 2022, 49(9), 8953–8973. https://doi.org/10.1007/s11033-022-07385-2
25. Han Y., Yang J., Fang J., Zhou Y., Candi E., Wang J., Hua D., Shao C., Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 2022, 7(1), 92. https://doi.org/10.1038/s41392-022-00932-0
26. Mabotuwana N.S., Rech L., Lim J., Hardy S.A., Murtha L.A., Rainer P.P., Boyle A.J. Paracrine Factors Released by Stem Cells of Mesenchymal Origin and their Effects in Cardiovascular Disease: A Systematic Review of Pre-clinical Studies. Stem Cell Rev Rep. 2022, 18(8), 2606–2628. https://doi.org/10.1007/s12015-022-10429-6
27. Neuber S., Emmert M.Y., Nazari-Shafti T.Z. Hopes and Hurdles of Employing Mesenchymal Stromal Cells in the Treatment of Cardiac Fibrosis. Int J Mol Sci. 2021, 22(23), 13000. https://doi.org/10.3390/ijms222313000
28. Yuan Z., Yan K., Wang J. Overexpression of integrin β2 improves migration and engraftment of adipose-derived stem cells and augments angiogenesis in myocardial infarction. Ann Transl Med. 2022, 10(16), 863. https://doi.org/10.21037/atm-22-3339
29. Palmquist-Gomes P., Pérez-Pomares J.M., Guadix J.A. Cell-based therapies for the treatment of myocardial infarction: lessons from cardiac regeneration and repair mechanisms in non-human vertebrates. Heart Fail Rev. 2019, 24(1), 133–142. https://doi.org/10.1007/s10741-018-9750-8
30. Huang H., Huang W. Regulation of Endothelial Progenitor Cell Functions in Ischemic Heart Disease: New Therapeutic Targets for Cardiac Remodeling and Repair. Front Cardiovasc Med. 2022, 9, 896782. https://doi.org/10.3389/fcvm.2022.896782
31. Tompkins B.A., Balkan W., Winkler J., Gyöngyösi M., Goliasch G., Fernández-Avilés F., Hare J.M. Preclinical Studies of Stem Cell Therapy for Heart Disease. Circ Res. 2018, 122(7), 1006–1020. https://doi.org/10.1161/CIRCRESAHA.117.312486
32. Guo L., Liu M.F., Huang J.N., Li J.M., Jiang J., Wang J.A. Role of interleukin-15 in cardiovascular diseases. J Cell Mol Med. 2020, 24(13), 7094–7101. https://doi.org/10.1111/jcmm.15296
33. Venugopal H., Hanna A., Humeres C., Frangogiannis N.G. Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells. 2022, 11(9), 1386. https://doi.org/10.3390/cells11091386
34. Gao Q., Guo M., Zeng W., Wang Y., Yang L., Pang X., Li H., Suo Y., Jiang X., Yu C. Matrix metalloproteinase 9 secreted by hypoxia cardiac fibroblasts triggers cardiac stem cell migration in vitro. Stem Cells Int. 2015, 2015, 836390. https://doi.org/10.1155/2015/836390
35. Deng B., Zhang X., Liang Y., Jiang H. Huang W., Wu Y., Deng W. Nonadherent culture method promotes MSC-mediated vascularization in myocardial infarction via miR-519d/VEGFA pathway. Stem Cell Res Ther. 2020, 11(1), 266. https://doi.org/10.1186/s13287-020-01780-x
36. Becirovic-Agic M., Chalise U., Daseke M.J. 2nd, Konfrst S., Salomon J.D., Mishra P.K., Lindsey M.L. Infarct in the Heart: What's MMP-9 Got to Do with It? Biomolecules. 2021, 11(4), 491. https://doi.org/10.3390/biom11040491
37. Wang K.C., Yang L.Y., Lee J.E., Wu V., Chen T.F., Hsieh S.T., Kuo M.F. Combination of indirect revascularization and endothelial progenitor cell transplantation improved cerebral perfusion and ameliorated tauopathy in a rat model of bilateral ICA ligation. Stem Cell Res Ther. 2022, 13(1), 516. https://doi.org/10.1186/s13287-022-03196-1
38. Mai J., Wang F., Qiu Q., Tang B., Lin Y., Luo N., Yuan W., Wang X., Chen Q., Wang J., Chen Y. Tachycardia pacing induces myocardial neovascularization and mobilizes circulating endothelial progenitor cells partly via SDF-1 pathway in canines. Heart Vessels. 2016, 31(2), 230–240. https://doi.org/10.1007/s00380-014-0613-5
39. Chin S.P., Maskon O., Tan C.S., Anderson J.E., Wong C.Y., Hassan H.H.C., Choor C.K., Fadilah S.A.W., Cheong S.K. Synergistic effects of intracoronary infusion of autologous bone marrow-derived mesenchymal stem cells and revascularization procedure on improvement of cardiac function in patients with severe ischemic cardiomyopathy. Stem Cell Investig. 2021, 8, 2. https://doi.org/10.21037/sci-2020-026
40. Heldman A.W., DiFede D.L., Fishman J.E., Zambrano J.P., Trachtenberg B.H., Karantalis V., Mushtaq M., Williams A.R., Suncion V.Y., McNiece I.K., Ghersin E., Soto V., Lopera G., Miki R., Willens H., Hendel R., Mitrani R., Pattany P., Feigenbaum G., Oskouei B., Byrnes J., Lowery M.H., Sierra J., Pujol M.V., Delgado C., Gonzalez P.J., Rodriguez J.E., Bagno L.L., Rouy D., Altman P., Foo C.W., da Silva J., Anderson E., Schwarz R., Mendizabal A., Hare J.M. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT randomized trial. JAMA. 2014, 311, 62–73. https://doi.org/10.1001/jama.2013.282909
41. Karantalis V, DiFede DL, Gerstenblith G, Pham S., Symes J., Zambrano J.P., Fishman J., Pattany P., McNiece I., Conte J., Schulman S., Wu K., Shah A., Breton E., Davis-Sproul J., Schwarz R., Feigenbaum G., Mushtaq M., Suncion V.Y., Lardo A.C., Borrello I., Mendizabal A., Karas T.Z., Byrnes J., Lowery M., Heldman A.W., Hare J.M. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The prospective randomized study of mesenchymal stem cell therapy in patients undergoing cardiac surgery (prometheus) trial. Circ Res. 2014, 114, 1302–1310. https://doi.org/10.1161/CIRCRESAHA.114.303180
42. Razeghian-Jahromi I., Matta A.G., Canitrot R., Zibaeenezhad M.J., Razmkhah M., Safari A., Nader V., Roncalli J. Surfing the clinical trials of mesenchymal stem cell therapy in ischemic cardiomyopathy. Stem Cell Res Ther. 2021, 12(1), 361. https://doi.org/10.1186/s13287-021-02443-1
43. Najafi R., Sharifi A.M. Deferoxamine preconditioning potentiates mesenchymal stem cell homing in vitro and in streptozotocin-diabetic rats. Expert Opin Biol Ther. 2013, 13(7), 959–972. https://doi.org/10.1517/14712598.2013.782390
44. White I.A., Sanina C., Balkan W., Hare J.M. Mesenchymal Stem Cells in Cardiology. Methods Mol Biol. 2016, 1416, 55–87. https://doi.org/10.1007/978-1-4939-3584-0_4
45. Deuse T., Stubbendorff M., Tang-Quan K., Phillips .N, Kay M.A., Eiermann T., Phan T.T., Volk H.D., Reichenspurner H., Robbins R.C., Schrepfer S. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplantation. 2011, 20(5), 655–667. https://doi.org/10.3727/096368910X536473
46. Song H.F., He S., Li S.H., Yin W.J., Wu J., Guo J., Shao Z.B., Zhai X.Y., Gong H., Lu L., Wei F., Weisel R.D., Xie J., Li R.K. Aged Human Multipotent Mesenchymal Stromal Cells Can Be Rejuvenated by Neuron-Derived Neurotrophic Factor and Improve Heart Function After Injury. JACC Basic Transl Sci. 2017, 2(6), 702–716. https://doi.org/10.1016/j.jacbts.2017.07.014
47. Donders R, Bogie J.F.J., Ravanidis S., Gervois P., Vanheusden M., Marée R., Schrynemackers M., Smeets H.J.M., Pinxteren J., Gijbels K., Walbers S., Mays R.W., Deans R., Van Den Bosch L., Stinissen P., Lambrichts I., Gyselaers W., Hellings N. Human Wharton’s jelly-derived stem cells display a distinct immunomodulatory and proregenerative transcriptional signature compared to bone marrow-derived stem cells. Stem Cells Dev. 2018, 27, 65–84. https://doi.org/10.1089/scd.2017.0029
48. Yang W.Z., Zhang Y., Wu F., Min W.P., Minev B., Zhang M., Luo X.L., Ramos F., Ichim T.E., Riordan N.H., Hu X. Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions. Journal of Translational Medicine. 2010, 8, 75. https://doi.org/10.1186/1479-5876-8-75
49. Dehn J., Spellman S., Hurley C.K., Shaw B.E., Barker J.N., Burns L.J., Confer D.L., Eapen M., Fernandez-Vina M., Hartzman R., Maiers M., Marino S.R., Mueller C., Perales M.A., Rajalingam R., Pidala J. Selection of unrelated donors and cord blood units for hematopoietic cell transplantation: guidelines from the NMDP/CIBMTR. Blood. 2019, 134(12), 924–934. https://doi.org/10.1182/blood.2019001212
50. Shi P.A., Luchsinger L.L., Greally J.M., Delaney C.S. Umbilical cord blood: an undervalued and underutilized resource in allogeneic hematopoietic stem cell transplant and novel cell therapy applications. Curr Opin Hematol. 2022, 29(6), 317-326. https://doi.org/10.1097/MOH.0000000000000732
51. Spellman S.R. Hematology 2022-what is complete HLA match in 2022? Hematology Am Soc Hematol Educ Program. 2022, 2022(1), 83–89. https://doi.org/10.1182/hematology.2022000326
52. Ashbridge B., Zehir A., Lubin M., Barker J.N., Moore M.A. Evaluation of Initial Telomere Length and Changes after Transplantation in Adult Double-Unit Cord Blood Transplant Recipients. Biol Blood Marrow Transplant. 2015, 21(7), 1334–1336. https://doi.org/10.1016/j.bbmt.2015.04.006
53. Lai T.P., Verhulst S., Dagnall C.L., Hutchinson A., Spellman S.R., Howard A., Katki H.A., Levine J.E., Saber W., Aviv A., Gadalla S.M. Decoupling blood telomere length from age in recipients of allogeneic hematopoietic cell transplant in the BMT-CTN 1202. Front Immunol. 2022, 13, 966301. https://doi.org/10.3389/fimmu.2022.966301
54. Goldberg J.L., and Laughlin M.J. UC blood hematopoietic stem cells and therapeutic angiogenesis. Cytotherapy. 2007; 9(1), 4–13. https://doi.org/10.1080/14653240601139846
55. Chen Z., Chen L., Zeng C., Wang W.E. Functionally Improved Mesenchymal Stem Cells to Better Treat Myocardial Infarction. Stem Cells Int. 2018, 2018, 7045245. https://doi.org/10.1155/2018/7045245
56. Copeland N., Harris D., and Gaballa M.A. Human umbilical cord blood stem cells, myocardial infarction and stroke. Clin Med. 2009, 9(4), 342–345. https://doi.org/10.7861/clinmedicine.9-4-342
57. Katarzyna R. Adult stem cell therapy for cardiac repair in patients after acute myocardial infarction leading to ischemic heart failure: an overview of evidence from the recent clinical trials. Curr Cardiol Rev. 2017, 13(3), 223–231. https://doi.org/10.2174/1573403X13666170502103833
58. Rangappa S., Makkar R., and Forrester J. Review article: current status of myocardial regeneration: new cell sources and new strategies. J Cardiovasc Pharmacol Ther. 2010, 15(4), 338–343. https://doi.org/10.1177/1074248410376382
59. Cui Y.X., Kafienah Wael, Suleiman M.S., Ascione R. A new methodological sequence to expand and transdifferentiate human umbilical cord blood derived CD133 cells into a cardiomyocyte-like phenotype. Stem Cell Reviews and Reports. 2013, 9(3), 350–359. https://doi.org/10.1007/s12015-011-9316-9
60. Hare J.M., Traverse J.H., Henry T.D., Dib N., Strumpf R.K., Schulman S.P., Gerstenblith G., DeMaria A.N., Denktas A.E., Gammon R.S., Hermiller J.B. Jr. Reisman M.A., Schaer G.L., Sherman W. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009, 54, 2277–2286. https://doi.org/10.1016/j.jacc.2009.06.055https://doi.org/10.1016/j.jacc.2009.06.055
61. Bartolucci J., Verdugo F.J., González P.L., Larrea R.E., Abarzua E., Goset C., Rojo P., Palma I., Lamich R., Pedreros P.A., Valdivia G., Lopez V.M., Nazzal C., Alcayaga-Miranda F., Cuenca J., Brobeck M.J., Patel A.N., Figueroa F.E., Khoury M. Safety and Efficacy of the Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells in Patients With Heart Failure: A Phase 1/2 Randomized Controlled Trial (RIMECARD Trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]). Circ Res. 2017, 121(10), 1192̶1204. https://doi.org/10.1161/CIRCRESAHA.117.310712
62. Fedevych O., Chasovskyi K., Vorobiova G., Zhovnir V., Makarenko M., Kurkevych A., Maksymenko A., Yemets I. Open cardiac surgery in the first hours of life using autologous umbilical cord blood. Eur J Cardiothorac Surg. 2011, 40(4), 985–989. https://doi.org/10.1016/j.ejcts.2011.01.011
63. Chasovskyi K., Fedevych O., Vorobiova G., Zhovnir V., Maksimenko A., Boychenko O., Lysak Y., Cohen G., Yemets I. Arterial switch operation in the first hours of life using autologous umbilical cord blood. Ann Thorac Surg. 2012, 93(5), 1571–1576. https://doi.org/10.1016/j.athoracsur.2012.01.104
64. Badria A.F., Koutsoukos P.G., Mavrilas D. Decellularized tissue-engineered heart valves calcification: what do animal and clinical studies tell us? J Mater Sci Mater Med. 2020, 31(12), 132. https://doi.org/10.1007/s10856-020-06462-x
65. Lutter G., Puehler T., Cyganek L., Seiler J., Rogler A., Herberth T., Knueppel P., Gorb S.N., Sathananthan J., Sellers S., Müller O.J., Frank D., Haben I. Biodegradable Poly-ε-Caprolactone Scaffolds with ECFCs and iMSCs for Tissue-Engineered Heart Valves. Int J Mol Sci. 2022, 23(1), 527. https://doi.org/10.3390/ijms23010527
66. Filová E, Straka F, Miřejovský T, Mašín J, Bačáková L. Tissue-engineered heart valves. Physiol Res. 2009, 58 (2), S141–S158. https://doi.org/10.33549/physiolres.931919
67. Pati F., Jang J., Ha D.H., Won Kim S., Rhie J.W., Shim J.H., Kim D.H., Cho D.W. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014, 5, 3935. https://doi.org/10.1038/ncomms4935 . PMID: 24887553
68. Fang N.T., Xie S.Z., Wang S.M., Gao H.Y., Wu C.G., Pan L.F. Construction of tissue-engineered heart valves by using decellularized scaffolds and endothelial progenitor cells. Chin Med J (Engl). 2007, 120(8), 696–702. https://doi.org/10.1097/00029330-200704020-00016
69. Schmidt D., Mol A., Breymann C., Achermann J., Odermatt B., Gössi M., Neuenschwander S., Prêtre R., Genoni M., Zund G., Hoerstrup S.P. Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation. 2006, 114(1), 1125–1131. https://doi.org/10.1161/CIRCULATIONAHA.105.001040
70. Haverich A. Cardiac tissue engineering. Eur J Cardiothorac Surg. 2008, 34(2), 227–228. https://doi.org/10.1016/j.ejcts.2008.05.013
71. Latifi N., Lecce M., Simmons C.A. Porcine Umbilical Cord Perivascular Cells for Preclinical Testing of Tissue-Engineered Heart Valves. Tissue Eng Part C Methods. 2021, 27(1), 35–46. https://doi.org/10.1089/ten.TEC.2020.0314
72. Ground M., Waqanivavalagi S., Walker R., Milsom P., Cornish J. Models of immunogenicity in preclinical assessment of tissue engineered heart valves. Acta Biomater. 2021, 133, 102–113. https://doi.org/10.1016/j.actbio.2021.05.049
73. Yoon C.H., Kim T.W., Koh S.J., Choi Y.E., Hur J., Kwon Y.W., Cho H.J., and Kim H.S. Gata6 in pluripotent stem cells enhance the potential to differentiate into cardiomyocytes. BMB Rep. 2018, 51(2), 85-91. https://doi.org/10.5483/BMBRep.2018.51.2.176
74. Janic B., and Arbab A.S. Cord blood endothelial progenitor cells as therapeutic and imaging probes. Imaging Med. 2012, 4(4), 477–490. https://doi.org/10.2217/iim.12.35
75. Lee J.H., Kim S.W., Ji S.T., Kim Y.J., Jang W.B., Oh J.W., Kim J., Yoo S.Y., Beak S.H., Kwon S.M. Engineered M13 Nanofiber Accelerates Ischemic Neovascularization by Enhancing Endothelial Progenitor Cells. Tissue Eng Regen Med. 2017, 14(6), 787–802. https://doi.org/10.1007/s13770-017-0074-x
76. Sun K., Zhou Z., Ju X., Zhou Y., Lan J., Chen D., Chen H., Liu M., Pang L. Combined transplantation of mesenchymal stem cells and endothelial progenitor cells for tissue engineering: a systematic review and meta-analysis. Stem Cell Res Ther. 2016, 7(1), 151. https://doi.org/10.1186/s13287-016-0390-4
77. Alonzo M., AnilKumar S., Roman B., Tasnim N., Joddar B. 3D Bioprinting of cardiac tissue and cardiac stem cell therapy. Transl Res. 2019, 211, 64–83. https://doi.org/10.1016/j.trsl.2019.04.004
78. Lueders C., Jastram B., Hetzer R., Schwandt H. Rapid manufacturing techniques for the tissue engineering of human heart valves. Eur J Cardiothorac Surg. 2014, 46(4), 593–601. https://doi.org/10.1093/ejcts/ezt510
79. Kupfer M.E., Lin W.H., Ravikumar V., Qiu K., Wang L., Gao L., Bhuiyan D.B., Lenz M., Ai J., Mahutga R.R., Townsend D., Zhang J., McAlpine M.C., Tolkacheva E.G., Ogle B.M. In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid. Circ Res. 2020, 127(2), 207–224. https://doi.org/10.1161/CIRCRESAHA.119.316155https://doi.org/10.1161/CIRCRESAHA.119.316155
80. Ong C.S., Fukunishi T., Zhang H., Huang C.Y., Nashed A., Blazeski A., DiSilvestre D., Vricella L., Conte J., Tung L., Tomaselli G.F., Hibino N. Biomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Sci Rep. 2017, 7(1), 4566. https://doi.org/10.1038/s41598-017-05018-4
81. Harrell C.R., Fellabaum C., Jovicic N., Djonov V., Arsenijevic N., Volarevic V. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells. 2019, 16;8(5), 467. https://doi.org/10.3390/cells8050467 . PMID: 31100966; PMCID: PMC6562906.
82. Nazari-Shafti T.Z., Neuber S., Garcia Duran A., Xu Z., Beltsios E., Seifert M., Falk V., Stamm C. Human mesenchymal stromal cells and derived extracellular vesicles: Translational strategies to increase their proangiogenic potential for the treatment of cardiovascular disease. Stem Cells Transl Med. 2020, 9(12), 1558–1569. https://doi.org/10.1002/sctm.19-0432
83. Sun S.J., Wei R., Li F., Liao S.Y., Tse H.F. Mesenchymal stromal cell-derived exosomes in cardiac regeneration and repair. Stem Cell Reports. 2021, 16(7), 1662–1673. https://doi.org/10.1016/j.stemcr.2021.05.003
. PMID: 24887553
68. Fang N.T., Xie S.Z., Wang S.M., Gao H.Y., Wu C.G., Pan L.F. Construction of tissue-engineered heart valves by using decellularized scaffolds and endothelial progenitor cells. Chin Med J (Engl). 2007, 120(8), 696–702.
69. Schmidt D., Mol A., Breymann C., Achermann J., Odermatt B., Gössi M., Neuenschwander S., Prêtre R., Genoni M., Zund G., Hoerstrup S.P. Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation. 2006, 114(1), 1125–1131. https://doi.org/10.1161/CIRCULATIONAHA.105.001040
70. Haverich A. Cardiac tissue engineering. Eur J Cardiothorac Surg. 2008, 34(2), 227–228. https://doi.org/10.1016/j.ejcts.2008.05.013
71. Latifi N., Lecce M., Simmons C.A. Porcine Umbilical Cord Perivascular Cells for Preclinical Testing of Tissue-Engineered Heart Valves. Tissue Eng Part C Methods. 2021, 27(1), 35–46. https://doi.org/10.1089/ten.TEC.2020.0314
72. Ground M., Waqanivavalagi S., Walker R., Milsom P., Cornish J. Models of immunogenicity in preclinical assessment of tissue engineered heart valves. Acta Biomater. 2021, 133, 102–113. https://doi.org/10.1016/j.actbio.2021.05.049
73. Yoon C.H., Kim T.W., Koh S.J., Choi Y.E., Hur J., Kwon Y.W., Cho H.J., and Kim H.S. Gata6 in pluripotent stem cells enhance the potential to differentiate into cardiomyocytes. BMB Rep. 2018, 51(2), 85-91. https://doi.org/10.5483/BMBRep.2018.51.2.176
74. Janic B., and Arbab A.S. Cord blood endothelial progenitor cells as therapeutic and imaging probes. Imaging Med. 2012, 4(4), 477–490. https://doi.org/10.2217/iim.12.35
75. Lee J.H., Kim S.W., Ji S.T., Kim Y.J., Jang W.B., Oh J.W., Kim J., Yoo S.Y., Beak S.H., Kwon S.M. Engineered M13 Nanofiber Accelerates Ischemic Neovascularization by Enhancing Endothelial Progenitor Cells. Tissue Eng Regen Med. 2017, 14(6), 787–802. https://doi.org/10.1007/s13770-017-0074-x
76. Sun K., Zhou Z., Ju X., Zhou Y., Lan J., Chen D., Chen H., Liu M., Pang L. Combined transplantation of mesenchymal stem cells and endothelial progenitor cells for tissue engineering: a systematic review and meta-analysis. Stem Cell Res Ther. 2016, 7(1), 151. https://doi.org/10.1186/s13287-016-0390-4
77. Alonzo M., AnilKumar S., Roman B., Tasnim N., Joddar B. 3D Bioprinting of cardiac tissue and cardiac stem cell therapy. Transl Res. 2019, 211, 64–83. https://doi.org/10.1016/j.trsl.2019.04.004
78. Lueders C., Jastram B., Hetzer R., Schwandt H. Rapid manufacturing techniques for the tissue engineering of human heart valves. Eur J Cardiothorac Surg. 2014, 46(4), 593–601. https://doi.org/10.1093/ejcts/ezt510
79. Kupfer M.E., Lin W.H., Ravikumar V., Qiu K., Wang L., Gao L., Bhuiyan D.B., Lenz M., Ai J., Mahutga R.R., Townsend D., Zhang J., McAlpine M.C., Tolkacheva E.G., Ogle B.M. In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid. Circ Res. 2020, 127(2), 207–224. https://doi.org/10.1161/CIRCRESAHA.119.316155https://doi.org/10.1161/CIRCRESAHA.119.316155
80. Ong C.S., Fukunishi T., Zhang H., Huang C.Y., Nashed A., Blazeski A., DiSilvestre D., Vricella L., Conte J., Tung L., Tomaselli G.F., Hibino N. Biomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Sci Rep. 2017, 7(1), 4566. https://doi.org/10.1038/s41598-017-05018-4
81. Harrell C.R., Fellabaum C., Jovicic N., Djonov V., Arsenijevic N., Volarevic V. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells. 2019, 16;8(5), 467. https://doi.org/10.3390/cells8050467 . PMID: 31100966; PMCID: PMC6562906.
82. Nazari-Shafti T.Z., Neuber S., Garcia Duran A., Xu Z., Beltsios E., Seifert M., Falk V., Stamm C. Human mesenchymal stromal cells and derived extracellular vesicles: Translational strategies to increase their proangiogenic potential for the treatment of cardiovascular disease. Stem Cells Transl Med. 2020, 9(12), 1558–1569. https://doi.org/10.1002/sctm.19-0432
83. Sun S.J., Wei R., Li F., Liao S.Y., Tse H.F. Mesenchymal stromal cell-derived exosomes in cardiac regeneration and repair. Stem Cell Reports. 2021, 16(7), 1662–1673. https://doi.org/10.1016/j.stemcr.2021.05.003