ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 16, No. 1 , 2023
P., 5-20 Bibliography 97, Engl.
UDC: 577.1
ВЩШЖ https://doi.org/10.15407/biotech16.01.005
Full text: (PDF, in English)
COMBINED NANOCHEMOTHERAPY USING DOXORUBICIN AND CURCUMIN AS AN EXAMPLE
M. I. KANIUK
Palladina Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
The aim of the work was to review literature data on combined nanochemotherapy using the example of two drugs ̶doxorubicin and curcumin. Special attention was paid to the use of substances with synergistic properties in one nanoparticle, capable to penetrate into living cell.
The method of combined chemotherapy of nanopreparations improves processing efficiency. The technique of using nanocontainers with synergistic drugs in combination with ligands reduces the side effects of chemotherapy drugs.
Results. Literature data indicate that the use of nanopreparations contributes the rapid creation and use of synergistic combinations that were purposefully delivered to target cells, reducing dosage due to precise targeting. A promising direction of nanomedicine is the creation of multifunctional nanomaterials based on several active drugs having synergistic properties, with the simultaneous use of their enhancers and the strategy of active targeting. These structures enabled targeted and controlled penetration of medicinal compounds into the localization of pathological processes, reducing drugs toxicity for normal cells.
Conclusions. Combined chemotherapy using polymers and nanoparticles with ligands, in which synergistic drugs are included, ensures to reduce side effects and doses of chemotherapy drugs, and helps to overcome multiple drug resistance as well.
Key words: Combined nanochemotherapy, doxorubicin, curcumin, synergism, active targeting.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2023
References
...
1. Xu X., Ho W., Zhang X., Bertrand N., Farokhzad O. Cancer Nanomedicine: From Targeted Delivery to Combination Therapy. Trends Mol Med. 2015, 21 (4), 223–232. https://doi.org/10.1016/j.molmed.2015.01.001
2. Liu J., Movahedi F., Sun B., Sun L., Zhang B., Wang J., Li L., Xu Z. P. Immunostimulatory photochemotherapeutic nanocapsule for enhanced colon cancer treatment. Nanophotonics. 2021, 10 (12), 3321–3337. https://doi.org/10.1515/nanoph-2021-0202
3. Amoodizaj F. F., Baghaeifar S., Taheri E., Jadid M. F. S., Safi M., Sani N. S., Hajazimian S., Isazadeh A., Shanehbandi D. Enhanced anticancer potency of doxorubicin in combination with curcumin in gastric adenocarcinoma. J. Biochem Mol. Toxicol. 2020, 34 (6), e22486. https://doi.org/10.1002/jbt.22486
4. Murugesan K., Srinivasan P., Mahadeva R., Gupta C. M., Haq W. Tuftsin-Bearing Liposomes Co-Encapsulated with Doxorubicin and Curcumin Efficiently Inhibit EAC Tumor Growth in Mice. International Journal of Nanomedicine. 2020, 15, 10547–10559. https://doi.org/10.2147/IJN.S276336
5. Lu Sun, Xiaohui Deng, Xi Yang, Zhaojun Li, Zhihan Wang, Ling Li, Qinjie Wu,Feng Peng, Lei Liu, Changyang Gong. Co-delivery of doxorubicin and curcumin by polymeric micelles for improving antitumor efficacy on breast carcinoma. RSC Adv. 2014, 4, 46737–46750. https://doi.org/10.1039/C4RA07453J
6. Zhao X., Chen Q., Liu W., Li Y., Tang H., Liu X., Yang X. Codelivery of doxorubicin and curcumin with lipid nanoparticles results in improved efficacy of chemotherapy in liver cancer. Int J Nanomedicine. 2014, 10 (1), 257–270. https://doi.org/10.2147/IJN.S73322
7. Meng Q.Y., Cong H.L., Hu H., Xu F. J. Rational design and latest advances of codelivery systems for cancer therapy. Materials Today Bio 7. 2020, 100056. https://doi.org/10.1016/j.mtbio.2020.100056
8. Jia F, Li Y, Deng X, Wang X, Cui X, Lu J, Pan Z, Wu Y. Self‑assembled fluorescent hybrid nanoparticles‑mediated collaborative lncRNA CCAT1 silencing and curcumin delivery for synchronous colorectal cancer theranostics. J Nanobiotechnol. 2021, 19 (1), 238. https://doi.org/10.1186/s12951-021-00981-7
9. Hu Q., Sun W., Wang C., Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2016, 98, 19–34. https://doi.org/10.1016/j.addr.2015.10.022
10. Ashrafizadeh M., Zarrabi A., Hashemi F., Zabolian A., Saleki H., Bagherian M., Azami N., Bejandi A. K., Hushmandi K., Ang H.L., Makvandi P., Khan H., Kumar A. P. Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms: Enhancing Antitumor Activity. Pharmaceutics. 2020, 12 (11), 1084. https://doi.org/10.3390/pharmaceutics12111084
11. Guo W., Song Y., Song W., Liu Y., Liu Z., Zhang D., Tang Z., Bai O. Co-delivery of Doxorubicin and Curcumin with Polypeptide Nanocarrier for Synergistic Lymphoma Therapy. Sci Rep. 2020, 10 (1), 7832. https://doi.org/10.1038/s41598-020-64828-1
12. Motevalli S. M., Eltahan A. S., Liu L., Magrini A., Rosato N., Guo W., Bottini M., Liang X. J. Co-encapsulation of curcumin and doxorubicin in albumin nanoparticles blocks the adaptive treatment tolerance of cancer cells. Biophys Rep. 2019, 5 (1), 19–30. https://doi.org/10.1007/s41048-018-0079-6
13. Zhao X., Chen Q., Li Y., Tang H., Liu W., Yang X. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Eur. J. Pharm. Biopharm. 2015, 93, 27–36. https://doi.org/10.1016/j.ejpb.2015.03.003
14. Yu X., Xieripu A., Xu Q., Zulipikaer A., Song Y., Cai L., Chen J. GSH-responsive curcumin/doxorubicin encapsulated Bactrian camel serum albumin nanocomposites with synergistic effect against lung cancer cells. J Biomed Res. The Journal of Biomedical Research. 2020, 34 (1), 54–66. https://doi.org/10.7555/JBR.33.20190036
15. Yan T., Li D., Li J., Cheng F., Cheng J., Huang Y., He J. Effective co-delivery of doxorubicin and curcumin using aglycyrrhetinic acid-modifiedchitosan-cystamine-poly(ε-caprolactone) copolymer micelle forcombination cancer chemotherapy. Colloids and Surfaces B: Biointerfaces. 2016, 145, 526–538. https://doi.org/10.1016/j.colsurfb.2016.05.070
16. Zhao G., Sun Y., Dong X. Zwitterionic Polymer Micelles with Dual Conjugation of Doxorubicin and Curcumin: Synergistically Enhanced Efficacy against Multidrug-Resistant Tumor Cells. Langmuir. 2020, 36 (9), 2383–2395. https://doi.org/10.1021/acs.langmuir.9b03722
17. Rastegar R., Akbari Javar H., Khoobi M., Dehghan Kelishadi P., Hossein Yousefi G., Doosti M., Hossien Ghahremani M., Shariftabrizi A., Imanparast F., Gholibeglu E., Gholami M. Evaluation of a novel biocompatible magnetic nanomedicine based on beta-cyclodextrin, loaded doxorubicin-curcumin for overcoming chemoresistance in breast cancer. Artif Cells Nanomed Biotechnol. 2018, 46 (sup2), 207–216. https://doi.org/10.1080/21691401.2018.1453829
18. Rashid S., Ali N., Nafees S., Ahmad S.T., Arjumand W., Hasan S.K., Sultana S. Alleviation of doxorubicin induced nephrotoxicity and hepatotoxicity by chrysin in wistar rats. Toxicol Mech Methods. 2013, 23 (5), 337–45. https://doi.org/10.3109/15376516.2012.759306
19. Desai P., Thumma N. J., Wagh P. R., Zhan S., Ann D., Wang J., Prabhu S. Cancer Chemoprevention Using Nanotechnology-Based Approaches. Front Pharmacol. 2020, 11, 323. https://doi.org/10.3389/fphar.2020.00323
20. VanDyke D., Kyriacopulos P., Yassini1 B., Wright A., Burkhart E., Jacek S., Pratt M., Peterson C.R., Rai P. Nanoparticle Based Combination Treatments for Targeting Multiple Hallmarks of Cancer. Int J Nano Stud Technol. 2016, Suppl 4, 1–18. http://dx.doi.org/10.19070/2167-8685-SI04001
21. Guo F., Yu N., Jiao Y., Hong W., Zhou K., Ji X., Yuan H., Wang H., Li A., Wang G., Yang G. Star polyester-based folate acid-targeting nanoparticles for doxorubicin and curcumin codelivery to combat multidrug-resistant breast cancer. Drug Deliv. 2021, 28 (1), 1709–1721. https://doi.org/10.1080/10717544.2021.1960926
22. Zhang, J.; Li, J.; Shi, Z.; Yang, Y.; Xie, X.; Lee, S.M.; Wang, Y.; Leong, K.W.; Chen, M. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater. 2017, 58, 349–364. https://doi.org/10.1016/j.actbio.2017.04.029
23. Sheena T. S., Balaji P., Venkatesan R., Akbarsha M. A., Jeganathan K. Functional Evaluation of Doxorubicin Decorated Polymeric Liposomal Curcumin: A Surface Tailored Therapeutic Platform for Combination Chemotherapy. New J. Chem. 2018, 42 (20), 16608–16619. https://doi.org/10.1039/C8NJ02406E
24. Chen W., Zhang M., Shen W., Du B., Yang J., Zhang, Q. A polycationic brush mediated co-delivery of doxorubicin and gene for combination therapy. Polymers. 2019, 11, 60. https://doi.org/10.3390/polym11010060
25. Ju Choi J. Y., Thapa R. K., Yong C. S., Kim J. O. Nanoparticle-based combination drug delivery systems for synergistic cancer treatment. Journal of Pharmaceutical Investigation. 2016, 46, 325–339. https://doi.org/10.1007/s40005-016-0252-1
26. Wójcik M., Lewandowski W., Król M., Pawłowski K., Mieczkowski J., Lechowski R., Zabielska K. Enhancing anti-tumor efficacy of Doxorubicin by non-covalent conjugation to gold nanoparticles - in vitro studies on feline fibrosarcoma cell lines. PLoS One. 2015, 10 (4), e0124955. https://doi.org/10.1371/journal.pone.0129639
27. Kumar D., Basu S., Parija L., Rout D., Manna S., Dandapat J., Debata P. R. Curcumin and Ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells. Biomedicine & Pharmacotherapy. 2016, 81, 31–37. https://doi.org/10.1016/j.biopha.2016.03.037
28. Saleh H. A., Ramdan E., Elmazar M. M., Azzazy H. M. E., Abdelnaser A. Comparing the protective effects of resveratrol, curcumin and sulforaphane against LPS/IFN-γ-mediated inflammation in doxorubicin-treated macrophages. Scientific Reports. 2021, 11 (1), 545. https://doi.org/10.7150/jca.34374
29. Rizeq B., Gupta I., Ilesanmi J., AlSafran M., Rahman M.M., Ouhtit A. The Power of Phytochemicals Combination in Cancer Chemoprevention. Journal of Cancer. 2020, 11 (15), 4521–4533. https://www.jcancer.org/v11p4521.htm
30. Raj M. H., Abd Elmageed Z. Y., Zhou J., Gaur R. L., Nguyen L., Azam G.A., Braley P., Rao P. N., Fathi I. M., Ouhtit A. Synergistic action of dietary phyto-antioxidants on survival and proliferation of ovarian cancer cells. Gynecologic oncology. 2008, 110 (3), 432–438. https://doi.org/10.1016/j.ygyno.2008.05.001
31. Moghtaderi H., Sepehri H., Delphi L., Attari F. Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231. BioImpacts. 2018, 8 (3), 185–194. https://doi.org/10.15171/bi.2018.21
32. Hashemi M., Ebrahimian M. Recent advances in nanoformulations for co-delivery of curcumin and chemotherapeutic drugs. Nanomed J. 2017, 4 (1), 1–7. https://nmj.mums.ac.ir/article_8046.html
33. Khan A. H., Jiang X., Surwase S., Gultekinoglu M., Bayram C., Sathisaran I., Bhatia D., Ahmed J., Wu B., Ulubayram K., Edirisinghe M., Dalvi S. V. Effectiveness of Oil-layered Albumin Microbubbles Produced using Microfluidic T-junctions in Series for In-vitro Inhibition of Tumor Cells. Langmuir. 2020, 36 (39), 11429–11441. https://doi.org/10.1021/acs.langmuir.0c01557
34. Qin L., Wu L., Jiang S., Yang D., He H., Zhang F., Zhang P. Multifunctional micelle delivery system for overcoming multidrug resistance of doxorubicin. J. Drug. Target. 2018, 26 (4), 289–295. doi: 10.1080/1061186X.2017.1379525. https://doi.org/10.1080/1061186X.2017.1379525
35. Yang C. L., Chen J. P., Wei K. C., Chen J. Y., Huang C. W., Liao Z. X. Release of Doxorubicin by a Folate-Grafted, Chitosan-Coated Magnetic Nanoparticle. Nanomaterials (Basel). 2017, 7 (4), 85. https://doi.org/10.3390/nano7040085
36. Duro-Castano A., Movellan J., Vicent M. J. Smart branched polymer drug conjugates as nano-sized drug delivery systems. Biomater. Sci., 2015, 3 (10), 1321–1334. https://doi.org/10.1039/C5BM00166H
37. Pramanik D., Campbell N. R., Das S., Gupta S., Chenna V., Bisht S., Sysa-Shah P., Bedja D., Karikari C., Steenbergen C., Gabrielson K. L., Maitra A., Maitra A. A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy. Oncotarget. 2012, 3 (6), 640–650. https://doi.org/10.18632/oncotarget.543
38. Pramanik D., Campbell N. R., Das S., Gupta S., Chenna V., Bisht S., Sysa-Shah P., Bedja D., Karikari C., Steenbergen C., Gabrielson K. L., Maitra Am., Maitra An. A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy. Oncotarget 2012, 3 (6), 640–650. https://doi.org/10.18632/oncotarget.543
39. Arya G., Das M., Sahoo S.K. Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer. Biomed Pharmacother. 2018, 102, 555–566. https://doi.org/10.1016/j.biopha.2018.03.101
40. Thi T. T. H., Pilkington E. H., Nguyen D. H., Lee J. S., Park K. D., Truong N. P. The Importance of Poly(ethylene glycol) Alternatives for Overcoming PEG Immunogenicity in Drug Delivery and Bioconjugation. Polymers. 2020, 12 (2), 298. https://doi.org/10.3390/polym12020298
41. Garg S., Garg A., Sahu N. K., Yadav A. K. Synthesis and Characterization of Nanodiamond-Doxorubicin (Dox) Conjugate for Effective Delivery against MCF-7 Cell Lines. Journal of Drug Delivery and Therapeutics. 2019, 9 (4-s), 589–594. https://doi.org/10.22270/jddt.v9i4-s.3400
42. Prados J., Melguizo C., Ortiz R., Vélez C., Alvarez P. J., Arias J. L., Ruíz M. A., Gallardo V., Aranega A. Doxorubicin-loaded nanoparticles: new advances in breast cancer therapy. Anti-cancer Agents Med Chem. 2012, 12 (9), 1058–70. https://doi.org/10.2174/187152012803529646
43. Pavot V., Berthet M., Rességuier J., Legaz S., Handké N., Gilbert S.C., Paul S., Verrier B. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery. Nanomedicine (Lond.). 2014, 9 (17), 2703–18. https://doi.org/10.2217/nnm.14.156
44. Arunraj T. R., Rejinold N. S., Kumar N. A., Jayakumar R. Doxorubicin-chitin-poly(caprolactone) composite nanogel for drug delivery. Int J Biol Macromol. 2013, 62, 35–43. https://doi.org/10.1016/j.ijbiomac.2013.08.013
45. Mangalathillam S., Rejinold N. S., Nair A., Lakshmanan V. K., Nair S. V., Jayakumar R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale. 2012, 4 (1), 239–50. https://doi.org/10.1039/C1NR11271F
46. Xu B., Zhou W., Cheng L., Zhou Y., Fang A., Jin C., Zeng J., Song X., Guo X. Novel Polymeric Hybrid Nanocarrier for Curcumin and Survivin shRNA Co-delivery Augments Tumor Penetration and Promotes Synergistic Tumor Suppression. Frontiers in Chemistry. 2020, 8 (762). https://doi.org/10.3389/fchem.2020.00762
47. Lu J. , Zhao W., Huang Y., Liu H., Marquez R., Gibbs R.B., Li J., Venkataramanan R., Xu L., Li S., Li S. Targeted delivery of Doxorubicin by folic acid-decorated dual functional nanocarrier. Mol. Pharm. 2014, 11 (11), 4164–4178. https://doi.org/10.1021/mp500389v
48. Rosch J.G., Brown A.L., DuRoss A.N., DuRoss E.L., Sahay G., Sun C. Nanoalginates via Inverse-Micelle Synthesis: Doxorubicin-Encapsulation and Breast Cancer Cytotoxicity. Nanoscale Research Letters. 2018, 13 (1), 350. https://doi.org/10.1186/s11671-018-2748-2
49. Prasanthan P., Kishore N. Self-assemblies of pluronic micelles in partitioning of anticancer drugs and effectiveness of this system towards target protein. RSC Adv. 2021, 11, 22057–22069. https://doi.org/10.1039/D1RA03770F
50. Elzoghby A. O., Samy W. M., Elgindy N. A. J. Albumin-based nanoparticles as potential controlled release drug delivery systems. Control Release. 2012, 157 (2), 168–82. https://doi.org/10.1016/j.jconrel.2011.07.031
51. Lee E. S., Youn Y. S. J. Albumin-based potential drugs: focus on half-life extension and nanoparticle preparation. Pharm. Investig. 2016, 46, 305–315. https://doi.org/10.1007/s40005-016-0250-3
52. Sheng Z., Hu D., Zheng M., Zhao P., Liu H., Gao D., Gong P., Gao G., Zhang P., Ma Y., Cai L. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy. ACS Nano. 2014, 8 (12), 12310–22. https://doi.org/10.1021/nn5062386
53. Dmytrenko O., Kulish M., Pavlenko O., Lesiuk A., Momot A., Busko T., Kaniuk M., Nikolaienko T., Bulavin L. Volume Editors: Bulavin L., Lebovka N. Mechanisms of Heteroassociation of Ceftriaxone and Doxorubicin Drugs with Bovine Serum Albumin (Conference Paper). Publisher: Springer Science and Business Media Deutschland GmbH. Springer Proceedings in Physics. 2022, 266 (8), 219–245. 9th International Conference on Physics of Liquid Matter: Modern Problems, PLMMP 2020; Kyiv; Ukraine; 22–26 May 2020; Code 266469. https://doi.org/10.1007/978-3-030-80924-9_8
54. Gu Y., Li J., Li Y., Song L., Li D., Peng L., Wan Y., Hua S. Nanomicelles loaded with doxorubicin and curcumin for alleviating multidrug resistance in lung cancer. International Journal of Nanomedicine. Int J Nanomedicine. 2016, 2016 (11), 5757–5770. https://doi.org/10.2147/IJN.S118568
55. Yu C., Zhou M., Zhang X., Wei W., Chen X., Zhang X. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis. Nanoscale. 2015, 7 (13), 5683–5690. https://doi.org/10.1039/C5NR00290G
56. El-Sherbiny I. M., Smyth H. D. C. Controlled Release Pulmonary Administration of CurcuminUsing Swellable Biocompatible Microparticles. Mol Pharm. 2012, 9 (2), 269–280. https://doi.org/10.1021/mp200351y
57. Azzazy H. M. E., Fahmy S. A., Mahdy N. K., Meselhy M. R., Bakowsky U. Chitosan-Coated PLGA Nanoparticles Loaded with Peganum harmala Alkaloids with Promising Antibacterial and Wound Healing Activities. Nanomaterials (Basel). 2021, 11 (9), 2438. https://doi.org/10.3390/nano11092438
58. Le T.M.P., Pham V. P., Dang T. M. L., La T. H., Le T. H., Le Q. H. Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy Adv. Nat. Sci.: Nanosci. Nanotechnol. 2013, 4 (2), 025001. http://dx.doi.org/10.1088/2043-6262/4/2/025001
59. Bae K. H, Ha Y. J., Kim C., Lee K. R. Park T.G. Pluronic/chitosan shell cross-linked nanocapsules encapsulating magnetic nanoparticles. Biomater. Sci. Polymer Edn. 2008, 19 (12), 1571–1583. https://doi.org/10.1163/156856208786440451
60. Rao D. A., Cote B., Stammet M., Al Fatease A. M., Alani A. W. G. Evaluation of the Stability of Resveratrol Pluronic ® Micelles Prepared by Solvent Casting and Simple Equilibrium Methods. Pharmaceutical Nanotechnology. 2016, 4 (2), 120–125. http://www.eurekaselect.com/article/75250
https://dx.doi.org/10.2174/2211738504666160428155355
61. Tavano L., Mauro L., Naimo G. D., Bruno L., Picci N., Andò S., Muzzalupo R. Further Evolution of Multifunctional Niosomes Based on Pluronic Surfactant: Dual Active Targeting and Drug Combination Properties. Langmuir. 2016, 32 (35), 8926–8933. https://doi.org/10.1021/acs.langmuir.6b02063
62. Anaıs Pitto-Barry , Nicolas P. E. Barry. Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym. Chem. 2014, 5, 3291–3297. https://doi.org/10.1039/C4PY00039K
63. Chen Y., Zhang W., Huang Y., Gao F., Sha X., Fang X. Pluronic-based functional polymeric mixed micelles for co-delivery of doxorubicin and paclitaxel to multidrug resistant tumor. Int. J. Pharm. 2015, 488 (1–2), 44–58. https://doi.org/10.1016/j.ijpharm.2015.04.048
64. Kanyuk M. I. Ultrafine fluorescent diamonds in nanotechnology. Biotechnologia Acta. 2014, 7 (4), 9–24. (In Ukrainian). https://doi.org/10.15407/biotech7.04.009
65. Kanyuk М. І. Use of nanodiamonds in biomedicine. Biotechnologia Acta. 2015, 8 (2), 9–25. https://doi.org/10.15407/biotech8.02.009
66. Park S. S., Lee D. M., Lim J. H., Lee D., Park S. J., Kim H. M., Sohn S., Yoon G., Eom Y. W., Jeong S. Y., Choi E. K., Choi K. S. Pyrrolidine dithiocarbamate reverses Bcl-xL-mediated apoptotic resistance to doxorubicin by inducing paraptosis. Carcinogenesis. 2018, 39 (3), 458–470. https://doi.org/10.1093/carcin/bgy003
67. Liu Z., Huang P., Law S., Tian H., Leung W., Xu C. Preventive Effect of Curcumin Against Chemotherapy-Induced Side-Effects. Front. Pharmacol. 2018, 9 (1374). https://doi.org/10.3389/fphar.2018.01374
68. Zhao N., Woodle M. C., Mixson A. J. Advances in delivery systems for doxorubicin. J. Nanomed. Nanotechnol. 2018, 9 (5), 519. https://doi.org/10.4172/2157-7439.1000519
69. Mohajeri M., Sahebkar A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol. 2018, 122, 30–51. https://doi.org/10.1016/j.critrevonc.2017.12.005
70. Benzer F, Kandemir F. M., Kucukler S., Comaklı S., Caglayan C. Chemoprotective effects of curcumin on doxorubicin-induced nephrotoxicity in wistar rats: by modulating inflammatory cytokines, apoptosis, oxidative stress and oxidative DNA damage. Arch Physiol Biochem. 2018, 124 (5), 448–457. https://doi.org/10.1080/13813455.2017.1422766
71. Möller K., Macaulay B., Bein T. Curcumin Encapsulated in Crosslinked Cyclodextrin Nanoparticles Enables Immediate Inhibition of Cell Growth and Efficient Killing of Cancer Cells. Nanomaterials (Basel). 2021, 11 (2), 489. https://doi.org/10.3390/nano11020489
72. Hewlings S. J., Kalman D. S. Curcumin: A Review of Its’ Effects on Human Health. Foods. 2017, 6 (10), 92, 1–11. https://doi.org/10.3390/foods6100092
73. Fonseka P., Gangoda L., Pathan M., Di Giannatale A,. Mathivanan S. Combinatorial treatment of curcumin or silibinin with doxorubicin sensitises high-risk neuroblastoma. J. Cancer Metastasis Treat. 2020, 6 (7). http://dx.doi.org/10.20517/2394-4722.2019.024
74. Medeiros A. C., Medeiros A. S. C., Azevedo Ítalo M., Celani L. M., Souza T. B. Response of n-nitrosodiethylamine-induced hepatocellular carcinoma to treatment with curcumin vs doxorubicin. J Surg Cl Res. 2019, 10 (1), 25–38. https://doi.org/10.20398/jscr.v10i1.17406
75. Yadav Y. C., Pattnaik S., Swain K. Curcumin loaded mesoporous silica nanoparticles: assessment of bioavailability and cardioprotective effect. Drug Dev Ind Pharm . 2019, 45 (12), 1889–1895. https://doi.org/10.1080/03639045.2019.1672717
76. Sen G.S., Mohanty S., Hossain D.M.S., Bhattacharyya S., Banerjee S., Chakraborty J., Saha S., Ray P., Bhattacharjee P., Mandal D., Bhattacharya A., Chattopadhyay S., Das T., Sa G. Curcumin enhances the efficacy of chemotherapy by tailoring p65NFκB-p300 cross-talk in favor of p53-p300 in breast cancer. J Biol Chem. 2011, 286 (49), 42232–42247. https://doi.org/10.1074/jbc.M111.262295
77. Kaniuk M. I. Prospects of Curcumin use in Nanobiotechnology. Biotechnologia Acta. 2016, 9 (3), С 23–36. http://dx.doi.org/10.15407/biotech9.03.023
78. Kaniuk M. I. Curcumin-based multifunctional nanosystems. Biotechnologia Acta. 2021, 14, (5), 21–37, https://doi.org/10.15407/biotech14.05.021s
79. Ucisik M. H., Küpcü S., Schuster B., Sleytr U. B. Characterization of CurcuEmulsomes: nanoformulation for enhanced solubility and delivery of curcumin. J Nanobiotechnology. 2013, 11 (37). https://doi.org/10.1186/1477-3155-11-37
80. Rahban M., Habibi-Rezaei M., Mazaheri M., Saso L., Moosavi-Movahedi A. A. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants (Basel). 2020, 9 (12), 1228. https://doi.org/10.3390/antiox9121228
81. Yu X., Yu W., Han X., Chen Z., Wang S., Zhai H. Sensitive analysis of doxorubicin and curcumin by micellar electromagnetic chromatography with a double wavelength excitation source. Anal. Bioanal. Chem. 2021, 413 (2), 469–478. https://doi.org/10.1007/s00216-020-03017-5
82. Sesarman A., Tefas L., Sylvester B., Licarete E., Rauca V., Luput L., Patras L., Porav S., Banciu M., Porfire A. Co-delivery of curcumin and doxorubicin in PEGylated liposomes favored the antineoplastic C26 murine colon carcinoma microenvironment. Drug Deliv Transl Res. 2019, 9 (1), 260–272. https://doi.org/10.2174/2211738504666160428155355
83. Kim B., Seo B., Park S., Lee C., Kim J. O., Oh K. T., Lee. E. S., Choi H. G., Youn Y. S. Albumin nanoparticles with synergistic antitumor efficacy against metastatic lung cancers. Colloids and Surfaces B: Biointerfaces. 2017, 158, 157–166. https://doi.org/10.1016/j.colsurfb.2017.06.039
84. Diao L., Shen A., Yang Y., Tao J., Hu Y. CD44-targeted hyaluronic acid–curcumin reverses chemotherapeutics resistance by inhibiting P-gp and anti-apoptotic pathways. RSC Adv. 2019, 9 (70), 40873–40882. DOI https://doi.org/10.1039/C9RA08202F
85. Kaniuk M. I. Multifunctional nanosystems based on two fluorescent dyes, doxorubicin and curcumin. Biotechnologia Acta. 2022, 15, (6), 5–25. https://doi.org/10.15407/biotech15.06.005.
86. Xu P., Zuo H., Zhou R., Wang F., Liu X., Ouyang J. Doxorubicin-loaded platelets conjugated with anti-CD22 mAbs: a novel targeted delivery system for lymphoma treatment with cardiopulmonary avoidance. Chen Oncotarget. 2017, 8 (35), 58322–58337. https://doi.org/10.18632/oncotarget.16871
87. Zhang Y., Yang C., Wang W., Liu .J, Liu Q., Huang F., Chu L., Gao H., Li C., Kong D., Liu Q., Liu J. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep. 2016, 6, 21225. https://doi.org/10.1038/srep21225
88. Kucuksayan E., Kucuksayan A. S. Real-Time Detection of Doxorubicin-Induced Apoptosis in Breast Cancer Cells Using the Back Reflection Spectroscopy. East J Med. 2021, 26 (1), 128–134. DOI https://doi.org/10.1039/C8RA09422E
89. Ren W., Tian G., Jian S., Gu Z., Zhou L., Yan L., Jin S., Yin W, Zhao Y. TWEEN coated NaYF4:Yb,Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery. RSC Adv. 2012, 2 (18), 7037–7041. https://doi.org/10.1039/C2RA20855E
90. Charron D. M., Zheng G. Nanomedicine development guided by FRET imaging. Nano Today. 2018, 18, 124–136. https://doi.org/10.1016/j.nantod.2017.12.006
91. Azizi M., Ghourchian H., Yazdian F., Bagherifam S., Bekhradnia S., Nyström B. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci Rep. 2017, 7 (1), 5178. https://www.nature.com/articles/s41598-017-05461-3
92. Wlodkowic D, Telford W, Skommer J, Darzynkiewicz Z. Apoptosis and beyond: cytometry in studies of programmed cell death. Methods Cell Biol. 2011, 103, 55–98. https://doi.org/10.1016/B978-0-12-385493-3.00004-8
93. Wang J., Wang H., Yan L., Hu Z., Wu X., Li F. Dual targeted and pH-responsive gold nanorods with improved chemotherapy and photothermal ablation for synergistic cancer treatment. RSC Adv. 2019, 9 (10), 5270–5281. DOI: https://doi.org/10.1039/C8RA09422E
94. Sanna V., Pala N., Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomedicine. 2014, 9, 467–483. https://doi.org/10.2147/IJN.S36654
95. Siwowska K., Schmid R.M., Cohrs S., Schibli R., Müller C. Folate Receptor-Positive Gynecological Cancer Cells: In Vitro and In Vivo Characterization. Pharmaceuticals (Basel). 2017, 10 (3), 72. https://doi.org/10.3390/ph10030072
96. Zwicke G. L., Mansoori G. A., Jeffery C. J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Reviews. 2012, 3 (1). https://doi.org/10.3402/nano.v3i0.18496
97. Zhuang X., Teng Y., Samykutty A., Mu J., Deng Z., Zhang L., Cao P., Rong Y., Yan J., Miller D., Zhang H. G. Grapefruit-derived Nanovectors Delivering Therapeutic miR17 Through an Intranasal Route Inhibit Brain Tumor Progression. Mol Ther. 2016, 24 (1), 96–105. https://doi.org/10.1038/mt.2015.188