ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 15, No. 5, 2022
P. 5-23. Bibliography 141, Engl.
UDC: 581.6:582.37:631.5
https://doi.org/10.15407/biotech15.05.005
WATER FERNS OF SALVINIACEAE FAMILY IN PHYTOREMEDIATION AND PHYTOINDICATION OF CONTAMINATED WATER
Kosakivska I.V., Vedenicheva N.P., Shcherbatiuk M.M., Voytenko L.V., Vasyuk V.A.
Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv
Background. Aquatic ecosystems are subjected to significant stress loads and depletion due to the influx of pollutants of inorganic and organic origin, that pose a serious threat to human health. The United Nations Environment Program has defined phytoremediation as an effective eco-technology for the removal, detoxification and immobilization of pollutants using plants. Water ferns of the Salviniaceae family belong to promising phytoremediants. They are characterized by high growth rates, resistance to adverse environmental factors, capable of adsorbing pollutants, including heavy metals. Species of the genus Salvinia and Azolla are used to assess the ecological state of water and study ecotoxicological effects of pollutants.
Aim. Analysis and generalization of the latest scientific results on the use of species of the Salviniaceae family for phytoremediation and phytoindication of contaminated water.
Results. In this review, we have highlighted key information on emerging phytotechnologies, including phytodegradation, phytostabilization, rhizofiltration, rhizodegradation, and phytovolatization. The growth and distribution features of species of the genus Salvinia and Azolla were described and current information on the use of water ferns for cleaning polluted water from heavy metals, inorganic and organic pollutants was presented. Data on the physiological and molecular mechanisms of the genus Salvinia and Azolla species adaptation to the toxic effect of pollutants of various origins were discussed. We focused special attention on the use of water ferns of the Salviniaceae family to control water pollution.
Key words: Salviniaceae, aquatic ecosystems, phytoremediation, bioindication, organic and inorganic pollutants.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2022
References
1. UNEP. Phytoremediation: An Environmentally Sound Technology for Pollution Prevention, Control and Remediation. 2019.
2. Ali S., Abbas Z., Rizwa M., Zaheer I.E., Yavas I., Ünay A., Abdel-Daim M.M., Bin-Jumah M., Hasanuzzaman M., Kalderis D. (2020) Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability. 2020, 12, 1927. https://doi.org/10.3390/su12051927
3. Ansari A.A., Naeem M., Gill S.S., AlZuaibr F.M. Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. Egyptian Journal of Aquatic Research. 2020, 46, 371–376. https://doi.org/10.1016/j.ejar.2020.03.002
4. Favas P.J.C., Pratas J., Rodrigues N., D’Souza R., Varun M., Paul M.S. Metal(loid) accumulation in aquatic plants of a mining area: Potential for water quality biomonitoring and biogeochemical prospecting. Chemosphere. 2017, 194, 158–170. https://doi.org/10.1016/j.chemosphere.2017.11.139
5. Yadav K.K., Gupta N., Kumar A., Reecec L.M., Singh N., Rezania S., Khan S.A. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecol. Engineer. 2018. 120, 274–298. https://doi.org/10.1016/j.ecoleng.2018.05.039
6. Phytohormonal system and structural-physiological features of pteridophytes (Polypodiaphyta). Ed. I.V. Kosakivska. Kyiv: Nash Format. 2019. 250 p.
7. Dhir B. Role of Ferns in Environmental Cleanup. In: Fernández, H. (eds) Current Advances in Fern Research. Springer, Cham. 2018. https://doi.org/10.1007/978-3-319-75103-0_25
8. Mustafa H.M., Hayder G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal. 2021, 12(1), 355–365. https://doi.org/10.1016/j.asej.2020.05.009
9. Vidal C.F., Oliveira J.A., da Silva A.A., Ribeiro C., Farnese F.D.S. Phytoremediation of arsenite-contaminated environments: Is Pistia stratiotes L. a useful tool? Ecol. Indicat. 2019, 104, 794–801. https://doi.org/10.1016/j.ecolind.2019.04.048
10. Carolin C.F., Kumar P.S., Saravanan A., Joshiba G.J., Naushad M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. https://doi.org/10.1016/j.jece.2017.05.029
11. Stefani G.D., Tocchetto D., Salvato M., Borin M. Performance of a floating treatment wetland for in-stream water amelioration in NE Italy. Hydrobiol. 2011, 674, 157–167.
https://doi.org/10.1007/s10750-011-0730-4
12. Jamuna S., Noorjahan C.M. Treatment of sewage waste water using water hyacinth – Eichhornia sp. and its reuse for fish culture. Toxicology International. 2009, 16 (2), 103–106.
13. Baker A.J.M., McGrath S.P., Sidoli C.M.D., Reeves R.D. The possibility of in situ heavy metal decontamination of polluted soils using crops of metalaccumulating plants. Resources, Conservation and Recycling. 1994, 11, 41–49. https://doi.org/10.1016/0921-3449(94)90077-9
14. Brooks R.R. Plants that Hyperaccumulate Heavy Metals. In: Plants and chemical elements: Biochemistry, uptake, tolerance and toxicity. Ed. Margaret E. Farago. VCH Verlagsgesellschaft, Weinheim, Germany, 1994, 88–105.
15. Cunningham S.D., Ow D.W. Promises and prospects of phytoremediation. Plant Physiol. 1996, 110, 715–719. https://doi.org/10.1104/pp.110.3.715
16. Rulkens W.H., Tichy R., Grotenhuis J.T.C. Remediation of polluted soil and sediment: Perspectives and failures. Water Science and Technology. 1998, 37, 27–35. https://doi.org/10.2166/wst.1998.0305
17. Girdhar M., Sharma N.R., Rehman H., Kumar A., Mohan A. Comparative assessment for hyperaccumulatory and phytoremediation capability of three wild weeds. Biotech. 2014, 4, 579–589. https://doi.org/10.1007/s13205-014-0194-0
18. Black H. Absorbing possibilities: Phytoremediation. Environmental Health Perspectives. 1995, 103, 1106–1108. https://doi.org/10.1289/ehp.951031106
19. Chaudhry T.M., Hayes W.J., Khan A.G., Khoo C.S. Phytoremediation – focusing on accumulator plants that remediate metal contaminated soils. Austral. J. Ecotoxicol. 1998, 4, 37–51.
20. Dushenkov V., Kumar P.B.A.N., Motto H., Raskin I. Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environ. Sci. Technol. 1995, 29, 1239–1245. https://doi.org/10.1021/es00005a015
21. Verma V.K., Tewari S., Rai J.P.N. Ion exchange during heavy metal biosorption from aqueous solution by dried biomass of macrophytes. Bioresource Technol. 2008, 99, 1932–1938. https://doi.org/10.1016/j.biortech.2007.03.042
22. Fard R.F., Azimi A.A., Nabi Bidhendi G.R. Batch kinetics and isotherms for biosorption of cadmium onto biosolids. Desalination and Water Treatment. 2011, 28, 69–74. https://doi.org/10.5004/dwt.2011.2203
23. Zhang T., Lu Q., Su C., Yang Y., Hu D., Xu Q. Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor). Ecotoxicol. Environ. Safety. 2017, 143, 46–56. https://doi.org/10.1016/j.ecoenv.2017.04.058
24. Smith A.R., Pryer K.M., Schuettpelz E., Korall P., Schneider H., Wolf P.G. A classification for extant ferns. Taxon. 2006, 55, 705–731. https://doi.org/10.1016/j.ecoenv.2017.04.058
25. Dubyna D.V., Shelyag-Sosnko Yu.R., Zhmud O.I., Zhmud M.E., Dvoretsky T.V., Dzyuba T.P., Tymoshenko P.A. Danube Biosphere Reserve. The plant world. Kyiv: Phytosociotsentr. 2003, 448 p. [In Ukrainian]
26. Green Book of Ukraine. Гол. Ed. Ya.P. Didukh. Kyiv: Alterpress. 2009, 448 p. [In Ukrainian]
27. Galka A., Szmeja J. Phenology of the aquatic fern Salvinia natans (L.) All. in the Vistula Delta in the context of climate warming. Limnologica. 2013, 43, 100–105. https://doi.org/10.1016/j.limno.2012.07.001
28. Babenko L., Vasheka O., Shcherbatiuk M., Romanenko P., Voytenko L., Kosakivska I. Biometric characteristics and surface microstructure of vegetative and reproductive organs of heterosporous water fern Salvinia natans. Flora. 2019, 252, 44–50. https://doi.org/10.1016/j.flora.2019.02.006
29. Seastedt T. Ecology: Traits of plant invaders. Nature. 2009, 459, 783–784. https://doi.org/10.1038/459783a
30. Shcherbatiuk M.M., Babenko L.M., Sheyko O.A., Kosakivska I.V. Microstructural features of water fern Salvinia natans (L.) All. Modern Phytomorphol. 2015, 7, 129–133. [In Ukrainian]
31. Shcherbatiuk M.M., Babenko L.M., Kosakivska I.V. The ultrastructure of chloroplasts and photosynthetic pigments in floating and submerged leaves of water fern Salvinia natans (L.) All during ontogeny. Modern Phytomorphol. 2016, 9, 85–95. [In Ukrainian]
32. Kosakivska I.V., Shcherbatiuk M.M., Babenko L.M., Polishchuk O.V. Characteristics of photosynthetic apparatus of aquatic fern Salvinia natans floating and submerged fronds. Adv. Biol. Earth Sci. 2018, 3(1), 13–26. http://jomardpublishing.com/UploadFiles/Files/journals/ABES/V3N1/KasakivskaI.pdf
33. Kachenko A.G., Singh B., Bhatia N.P. Heavy metal tolerance in common fern species. Austral. J. Botan. 2007, 55 (1), 63–73. https://doi.org/10.1071/BT06063
34. Mohebi Z., Nazari M. Phytoremediation of wastewater using aquatic plants. A review. J. Appl. Res. Water Wastewater. 2021, 8 (1), 50–58.
35. Dolui D., Hasanuzzaman M., Saha I., Ghosh A., Adak M.K. Amelioration of sodium and arsenic toxicity in Salvinia natans L. with 2,4-D priming through physiological responses. Environ. Sci. Pollut. Res. 2022, 29, 9232–9247. https://doi.org/10.1007/s11356-021-16246-7
36. Estrella-Gómez N., Mendoza-Cózatl D., Moreno-Sánchez R., González-Mendoza D., Zapata-Pérez O., Martínez-Hernández A., Santamaría J.M. Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity. Aquat. Toxicol. 2009, 91 (4), 320–328. https://doi.org/10.1016/j.aquatox.2008.11.002
37. Loría K.C., Emiliani J., Bergara C.D., Herrero M.S., Salvatierra L.M., Pérez L.M. Effect of daily exposure to Pb-contaminated water on Salvinia biloba physiology and phytoremediation performance. Aquat. Toxicol. 2019, 210, 158–166. https://doi.org/10.1016/j.aquatox.2019.02.019
38. Rezania S., Taib S.M., Din M.F.M., Dahalan F.A., Kamyab H. Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J. Hazardous Mater. 2016, 318, 587–599. https://doi.org/10.1016/j.jhazmat.2016.07.053
39. Dhir B., Sharmila P., Saradhi P.P. Photosynthetic performance of Salvinia natans exposed to chromium and zinc rich wastewater. Braz. J. Plant Physiol. 2008, 20, 61–70. https://doi.org/10.1016/j.limno.2012.07.001
40. Laabassi A., Boudehane A. Wastewater treatment by floating macrophytes (Salvinia natans) under Algerian semi-arid climate. Europ. J. Engineer. Nat. Sci. 2019, 3, 103–110.
41. Dolui D., Saha I., Adak M.K. 2, 4-D removal efficiency of Salvinia natans L. and its tolerance to oxidative stresses through glutathione metabolism under induction of light and darkness. Ecotoxicol. Environ. Saf. 2021, 208, 111708. https://doi.org/10.1016/j.ecoenv.2020.111708
42. Mandal C., Ghosh N., Maiti S., Das K., Sudha Gupta, Dey N., Adak M.K. Antioxidative responses of Salvinia (Salvinia natans Linn.) to aluminium stress and it’s modulation by polyamine. Physiol. Mol. Biol. Plants. 2013, 19, 91–103. https://doi.org/10.1007/s12298-012-0144-4
43. Ohtani S., Gon M., Tanaka K., Chujo Y. The design strategy for an aggregation-and crystallization-induced emission-active molecule based on the introduction of skeletal distortion by boron complexation with a tridentate ligand. Crystals. 2020, 10 (7), 615. https://doi.org/10.3390/cryst10070615
44. Pandey P.K., Singh S., Singh A.K., Samanta R., Yadav R.N., Singh M.C. Inside the plant: bacterial endophytes and abiotic stress alleviation. J. Appl. Nat. Sci. 2016, 18 (4), 1899–1904. https://doi.org/10.31018/jans.v8i4.1059
45. Julien M.H., Hill M.P., Tipping P.W. Salvinia molesta D.S. Mitchell (Salviniaceae). In: Muniappan R., Reddy G.V., Raman A. (eds.). Biological control of tropical weeds using arthropods. Cambridge University Press, Cambridge, UK, 2009, 378–407. https://doi.org/10.1017/CBO9780511576348.019
46. Koncki N.G., Aronson M.F.J. Invasion risk in a warmer world: Modeling range expansion and habitat preferences of three nonnative aquatic invasive plants. Invas. Plant Sci. Manag. 2015, 8(4), 436–449. https://doi.org/10.1614/IPSM-D-15-00020.1
47. Madani I., Sinada F., Mohammed T. Salvinia molesta (Salviniaceae) a new record for the flora of Sudan. Int. J. Sci. Environ. Technol. 2019, 8 (1), 132–140.
48. McFarland D.G., Nelson L.S., Grodowitz M.J., Smart R.M., Owens C. Salvinia molesta D. S. Mitchell (Giant Salvinia) in the United States: A Review of Species Ecology and Approaches to Management. Aquatic Plant Control Research Program, 2004, 1–41. http://acwc.sdp.sirsi.net/client/search/asset/1002855
49. Nelson L. Giant and Common Salvinia. In: Gettys L.A., Haller W.T. and Petty D.G. eds., Biology and Control of Aquatic Plants: A Best Management Practices Handbook, 3rd Edition, Aquatic Ecosystem Restoration Foundation, Marietta, GA, 2014, 157–164. http://www.aquatics.org/bmp%203rd%20edition.pdf
50. Andama M., Ongom R., Lukubye B. Proliferation of Salvinia molesta at Lake Kyoga Landing Sites as a Result of Anthropogenic Influences. J. Geosci. Envir. Protec. 2017, 5 (11), 160–173. https://doi.org/10.4236/gep.2017.511012
51. Jacono C.C. Salvinia molesta (Salviniaceae), new to Texas and Louisiana. Sida. 1999, 18, 927–928.
52. Galam D., Silva J., Sanders D., Oard J.H. Morphological and genetic survey of giant Salvinia populations in Louisiana and Texas. Aquatic Botany. 2015, 127, 20–25. https://doi.org/10.1016/j.aquabot.2015.07.005
53. Lal A. Salvinia molesta: An Assessment of the Effects and Methods of Eradication. Master's Projects and Capstones. 2016, 572. https://repository.usfca.edu/capstone/572
54. Kityo M.K., Sunwoo I., Kim S.H., Park Y.R., Jeong G.T., Kim S.K. Enhanced Bioethanol Fermentation by Sonication Using Three Yeasts Species and Kariba Weed (Salvinia molesta) as Biomass Collected from Lake Victoria, Uganda. Appl. Biochem. Biotechnol. 2020, 192 (1), 180–195. https://doi.org/10.1007/s12010-020-03305-x
55. Room P.M., Thomas P.A. Nitrogen, phosphorus and potassium in Salvinia molesta Mitchell in the field: effects of weather, insect damage, fertilizers and age. Aquat. Bot. 1986, 24 (3), 213–232. https://doi.org/10.1016/0304-3770(86)90058-6
56. George G.T., Gabriel J.J. Phytoremediation of heavy metals from municipal wastewater by Salvinia molesta Mitchell Haya: The Saudi J. Life Sci. 2017, 2 (3), 108–115.
57. Kumari S., Kumar B., Sheel R. Biological control of Heavy metal pollutants in water by Salvinia molesta. Int. J. Cur. Microbiol. Appl. Sci. 2017, 6 (4), 2838–2843. https://doi.org/10.20546/ijcmas.2017.604.325
58. Ugya A.Y., Hua X., Ma J. Phytoremediation as a Tool for the Remediation of Wastewater Resulting from Dyeing Activities. Appl. Ecol. Environ. Res. 2019, 17, 3723–3735. https://doi.org/10.15666/aeer/1702_37233735
59. Pavithra M., Kousar H. Potential of Salvinia molesta for Removal of Sodium in Textile Wastewater. J. Bioremed. Biodegrad. 2016, 7, 364. https://doi.org/10.4172/2155-6199.1000364
60. Tangahuand B.V., Putri A.P. The Degradation of BOD and COD of Batik Industry Wastewater Using Egeria densa and Salvinia molesta. J. Sains dan Teknolog. 2017, 9 (2), 82–91. https://doi.org/10.20885/jstl.vol9.iss2.art2
61. Mustafa H.M., Hayder G. Cultivation of S. molesta plants for phytoremediation of secondary treated domestic wastewater. Ain Shams Engineering Journal. 2021, 12(3), 1–8. https://doi.org/10.1016/j.asej.2020.11.028
62. da Silva A.A., De Oliveira J.A., De Campos F.V., Ribeiro C., Farnese F.D.S., Costa A.C. Phytoremediation potential of Salvinia molesta for arsenite contaminated water: role of antioxidant enzymes. Theor. Exp. Plant Physiol. 2018, 30 (4), 275–286. https://doi.org/10.1007/s40626-018-0121-6
63. Miranda C.V., Schwartsburd P.B. Salvinia (Salviniaceae) in southern and southeastern Brazil—including new taxa, new distribution records, and new morphological characters. Braz. J. Bot. 2019, 42, 171–188. https://doi.org/10.1007/s40415-019-00522-5
64. Gardenal P., Morbelli M.A., Guidice G. Spore Morphology and Ultrastructure in Species of Salvinia from Southern South America. Palynol. 2008, 32 (1), 143–156. https://doi.org/10.2113/gspalynol.32.1.143
65. Freitas F., Lunardi S., Souza L.B., von der Osten J.S.C., Arruda R., Andrade R.L.T., Battirola L.D. Accumulation of copper by the aquatic macrophyte Salvinia biloba Raddi (Salviniaceae). Braz. J. Biol. 2018, 78, 133–139. https://doi.org/10.1590/1519-6984.166377
66. Zevallos W.T., Salvatierra L.M., Loureiro D.B., Morató J., Pérez L.M. Evaluation of the autochthonous free-floating macrophyte Salvinia biloba Raddi for use in the phytoremediation of water contaminated. Desalin. Water Treat. 2018, 103, 282–289. https://doi.org/10.5004/dwt.2018.21709
67. Reeves M.C., Yujnovsky F.A., Bergara C.D., Litardo V.G., Landínez G., Fideleff S., Salvatierra L.M., Pérez L.M. Fitorremediación de aguas contaminadas con plomo (Pb+2), empleandoespecies nativas de flotación libre. Congreso Nacional de Conservación de la Biodiversidad. Las Grutas, 2017, 1. https://doi.org/10.13140/RG.2.2.22058.52165
68. Casagrande G.C.R., dos Reis C., Arruda R., de Andrade R.L.T., Battirola L.D. Bioaccumulation and Biosorption of Mercury by Salvinia biloba Raddi (Salviniaceae). Water Air Soil Pollut. 2018, 229, 166. https://doi.org/10.1007/s11270-018-3819-9
69. Emiliani J., Wendi G.L.O., Bergara C.D., Salvatierra L.M., Novo L.A.B., Leonardo M., Pérez L.M. Variations in the Phytoremediation Efficiency of Metal-polluted Water with Salvinia biloba: Prospects and Toxicological Impacts. Water. 2020, 12(6), 1737. https://doi.org/10.3390/w12061737
70. Zevallos W.T., Salvatierra L.M., Pérez L.M. Evaluación de los mecanismos de eliminación de Pb2+ en sistemas de fitorremediación en lotesoperados con Salvinia biloba raddi (acordeón de agua). Energeia. 2015, 13 (13), 10–17.
71. Iha D.S., Bianchini I. Phytoremediation of Cd, Ni, Pb and Zn by Salvinia minima. Int. J. Phytoremediation. 2015, 17(10), 929–935. https://doi.org/10.1080/15226514.2014.1003793
72. Castro-Longoria E., Trejo-Guillén K., Vilchis-Nestor A.R., Avalos-Borja M., Andrade-Canto S.B., Leal-Alvarado D.A., Santamaría J.M. Biosynthesis of lead nanoparticles by the aquatic water fern, Salvinia minima Baker, when exposed to high lead concentration. Colloids and Surfaces B: Biointerfaces. 2014, 114, 277–283. https://doi.org/10.1016/j.colsurfb.2013.09.050
73. Olguín E., Hernández E., Ramos I. The effect of both different light conditions and the pH value on the capacity of Salvinia minima Baker for removing cadmium, lead and chromium. Acta Biotechnol. 2002, 22 (1-2), 121–131. https://doi.org/10.1002/1521-3846(200205)22:1/2%3C121::AID-ABIO121%3E3.0.CO;2-F
74. Sánchez-Galván, G., Monroy, O., Gómez, J., Olguin E.J. Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water Air Soil Pollut. 2008, 194, 77–90. https://doi.org/10.1007/s11270-008-9700-5
75. Leal-Alvarado D., Espadas-Gil F., Saenz-Carbonell L., Talavera-May C., Sanramaria J.M. Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomata closure. Aquat. Toxicol. 2016, 171, 37–47. https://doi.org/10.1016/j.aquatox.2015.12.008
76. Fuentes I.I., Espadas-Gil F., Talavera-May C., Fuentes G., Santamaría J.M. Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes. Aquat. Toxicol. 2014, 155, 142–150. https://doi.org/10.1016/j.aquatox.2014.06.016
77. Sachan D., Ghosh A., Das G. Valorization of aquatic weed Salvinia minima to value-added eco-friendly biosorbent: preferential removal of dye and heavy metal. Int. J. Environ. Sci. Technol. 2022, https://doi.org/10.1007/s13762-022-04126-7
78. Hoffmann T., Kutter C., Santamaria J. Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Eng. Life Sci. 2004, 4(1), 61–65. https://doi.org/10.1002/elsc.200400008
79. Nichols P.B., Couch J.D., Al-Hamdani S.H. Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat. Bot. 2000, 68, 313–319. https://doi.org/10.1016/S0304-3770(00)00128-5
80. Mir B.A., Sahoo S. Growth and nutrient removal potential of two native hydrophytes (Pistia sp and Salvinia sp) from municipal sewage water of Sambalpur Town, Odisha, India. Eco. Env. Cons. 2017, 23 (4), 2247–2253.
81. Jampeetong A., Brix H., Kantawanichkul S. Response of Salvinia cucullata to high NH4(+) concentrations at laboratory scales. Ecotoxicol. Environ. Saf. 2012, 79, 69–74. https://doi.org/10.1016/j.ecoenv.2011.12.003
82. Rashidul Alam A.K.M., Hoque S. Phytoremediation of industrial wastewater by culturing aquatic macrophytes, Trapa natans L. and Salvinia cucullata Roxb. Jahangirnagar University. J. Biol. Sci. 2017, 6 (2), 19–27. https://doi.org/10.3329/jujbs.v6i2.36587
83. Boschilia S.M.,Thomaz S.M.,Piana P.A. Plasticidade morfológica de Salvinia herzogii (de La Sota) emresposta à densidade populacional. Acta Scientiarum Biological Sciences. 2006, 28 (1), 35–39. https://doi.org/10.4025/actascibiolsci.v28i1.1056
84. Paris C., Hadad H.R., Maine M.A., Suñe N. Efficiency of two free floating macrophytes in the adsorption of heavy metals. Limnetica. 2005, 24 (3), 237–244. https://doi.org/10.23818/limn.24.23
85. Hadad H.R., Maine M.A., Natale G.S., Bonetto C. The effect of nutrient addition on metaltolerance in Salvinia herzogii. Ecological Engineering. 2007, 31 (2), 122–131. https://doi.org/10.1016/j.ecoleng.2007.06.012
86. Suñe N., Sanchez G., Caffaratti S., Maine A. Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environ. Pollut. 2007, 145 (2), 467-473. https://doi.org/10.1016/j.envpol.2006.04.016
87. Molisani M.M., Rocha R., Machado W., Barreto R.C., Lacerda L.D. Mercury contents in aquatic macrophytes from two reservoirs in the Paraíba do Sul: Guandú river system, SE Brazil. Braz. J. Biol. 2006, 66 (1A), 101–107. https://doi.org/10.1590/s1519-69842006000100013
88. Espinoza-Quiñones F.R., Zacarkim C.E., Palacio S.M., Obregón C.L., Zenatti D.C., Galante R.M., Rossi N., Rossi F.L., Pereira I.R.A., Welter R.A., Rizzutto M.A. Removal of heavy metal from polluted river water using aquatic macrophytes Salvinia sp. Appl. Phys. Instrm. 2005, 35 (3B), 744–746. https://doi.org/10.1016/j.cej.2009.01.004
89. Banerjee G., Sarker S. The role of Salvinia rotundifolia in scavenging aquatic Pb (II) pollution: a case study. Bioprocess Engin. 1997, 17, 295–300. https://doi.org/10.1007/PL00008966
90. Fasani E., Li M., Varotto C., Furini A., Dal Corso G. Metal Detoxification in Land Plants: From Bryophytes to Vascular Plants. Plants. 2022, 11, 237. https://doi.org/10.3390/plants11030237
91. Dhir B., Sharmila P., Saradhi P.P., Sharma S., Kumar R., Mehta D. Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicol. Environ. Saf. 2011, 74 (6), 1678–1684 https://doi.org/10.1016/j.ecoenv.2011.05.009
92. Leblebici Z., Kar M., Yalçin V. Comparative study of Cd, Pb, and Ni removal potential by Salvinia natans (L.) All. and Lemna minor L.: Interactions with Growth Parameters. Romanian Biotechnological Letters. 2018, 23(1), 13235–13248.
93. Carrillo-Niquete G., Andrade J.L., Hernández-Terrones L. Cobos-Gasca V., Fuentes G., Santamaría J.M. Copper accumulation in the aquatic fern Salvinia minima causes more severe physiological stress than zinc. Biometals. 2022. https://doi.org/10.1007/s10534-022-00423-3
94. Lakra K.C., Lal B., Banerjee T. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology. Int. J. Phytoremediation. 2017, 19(6), 530–536. https://doi.org/10.1080/15226514.2016.1267698
95. Ranjitha J., Raj A., Kashyap R., Vijayalakshmi S., Donatus M. Removal of heavy metals from Industrial Effluent using Salvinia molesta. Int. J. ChemTech Res. 2016, 9 (5), 608–613.
96. Emiliani J., Oyarce W.G.L., Salvatierra L.M., Novo L.A.B., Pérez L.M. Evaluation of Cadmium Bioaccumulation-Related Physiological Effects in Salvinia biloba: An Insight towards Its Use as Pollutant Bioindicator in Water Reservoirs. Plants (Basel). 2021, 10(12), 2679. https://doi.org/10.3390/plants10122679
97. Kumar U., Rout S., Kaviraj M. Swain P., Nayak A.K. Uncovering morphological and physiological markers to distinguish Azolla strains. Braz. J. Bot. 2021, 44, 697–713. https://doi.org/10.1007/s40415-021-00725-9
98. Raja W. Azolla: Amazing Aquatic Fern. Lambert Academic Publishing, Saarbrucken. 2014.
99. Carlozzi P., Padovani G. The aquatic fern Azolla as a natural plant-factory for ammonia removal from fish-breeding fresh wastewater. Environ. Sci. Pollut. Res. 2016, 23, 8749–8755. https://doi.org/10.1007/s11356-016-6120-8
100. Gevrek M.N., Samanci B., Yagmur B., Arabaci O., Özkaynak E. Studies on the adaptation of Azolla mexicana in the aegean and the mediterranean regions. Plant Prod. Sci. 2004, 7, 50–54. https://doi.org/10.1626/pps.7.50
101. Eily A.N., Pryer K.M., Li F.W. A first glimpse at genes important to the Azolla–Nostoc symbiosis. Symbiosis. 2019, 78, 149–162. https://doi.org/10.1007/s13199-019-00599-2
102. Kumar U., Kaviraj M., Rout S., Chakraborty K., Swain P., Nayak P.K., Nayak A.K. Combined application of ascorbic acid and endophytic N-fixing Azotobacter chroococcum Avi2 modulates photosynthetic efficacy, antioxidants and growth-promotion in rice under moisture deficit stress. Microbiol. Res. 2021, 10, 126808. https://doi.org/10.1016/j.micres.2021.126808
103. Razavipour T., Moghaddam S.S., Doaei S., Noorhosseini S.A., Damalas C.A. Azolla (Azolla filiculoides) compost improves grain yield of rice (Oryza sativa L.) under different irrigation regimes. Agricult. Water Manag. 2018, 209, 1–10. https://doi.org/10.1016/j.agwat.2018.05.020
104. Rahmah S., Nasrah U., Lim L.-S., Ishak S.D., Rozaini M.Z.H., Liew H.J. Aquaculture wastewater-raised Azolla as partial alternative dietary protein for Pangasius catfish. Environ. Res. 2022, 208, 112718. https://doi.org/10.1016/j.envres.2022.112718
105. Zheng X., Lin Z., Lu J., Ye R., Qu M., Wang J., Xu G., Ying Z., Chen S. De novo transcriptome analysis reveals the molecular regulatory mechanism underlying the response to excess nitrogen in Azolla spp. Aquatic Toxicol. 2022, 248, 106202. https://doi.org/10.1016/j.aquatox.2022.106202
106. Costa M.L., Santos M.C., Carrapiço F., Pereira A.L. Azolla-Anabaena's behaviour in urban wastewater and artificial media--influence of combined nitrogen. Water Res. 2009, 43 (15), 3743–3750. https://doi.org/10.1016/j.watres.2009.05.038
107. Park H., Song U. Microcosm investigation of growth and phytoremediation potential of Azolla japonica along nitrogen gradients. Int. J. Phytoremed. 2017, 19 (10), 863–869. https://doi.org/10.1080/15226514.2017.1290582
108. Temmink R.J.M., Harpenslager S.F., Smolders A.J.P. Azolla along a phosphorus gradient: biphasic growth response linked to diazotroph traits and phosphorus-induced iron chlorosis. Sci. Rep. 2018, 8, 4451. https://doi.org/10.1038/s41598-018-22760-5
109. Da Silva M.E.J., Mathe L.O.J., Van Rooyen I.L., Brink H.G., Nicol W. Optimal Growth Conditions for Azolla pinnata R. Brown: Impacts of Light Intensity, Nitrogen Addition, pH Control, and Humidity. Plants, 2022, 11(8), 1048. https://doi.org/10.3390/plants11081048
110. Bennicelli R., Stezpniewska Z., Banach A., Szajnocha K., Ostrowski J. The ability of Azolla caroliniana to removeheavy metals (Hg (II), Cr (III), Cr (VI)) from municipal waste water. Chemosphere. 2004, 55(1), 141–146. https://doi.org/10.1016/j.chemosphere.2003.11.015
111. Roberts A.E., Boylen C.W., Nierzwicki-Bauer S.A. Effects of lead accumulation on the Azolla caroliniana–Anabaena association. Ecotoxicology and Environmental Safety. 2014, 102, 100–104. https://doi.org/10.1016/j.ecoenv.2014.01.019
112. Bianchi E., Biancalani A., Berardi C., Antal A., Fibbi D., Coppi A., Lastrucci L., Bussotti N., Colzi I., Renai L., Scordo C., Del Bubba M., Gonnelli C. Improving the efficiency of wastewater treatment plants: Bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minuta. Sci. Total Environ. 2020, 746, 141219. https://doi.org/10.1016/j.scitotenv.2020.141219
113. Zhao M., Duncan J.R. Removal and recovery of nickel from aqueous solution and electroplating rinse effluent using Azolla filiculoides. Proc. Biochem. 1998, 33 (3), 249–255. https://doi.org/10.1016/S0032-9592(97)00062-9
114. Sood A., Uniyal P.L., Prasanna R., Ahluwalia A.S. Phytoremediation potential of aquatic macrophyte, Azolla. Ambio. 2012, 41 (2), 122–137. https://doi.org/10.1007/s13280-011-0159-z
115. Naghipour D., Ashrafi S.D., Gholamzadeh M., Taghavi K., Naimi-Joubani M. Phytoremediation of heavy metals (Ni, Cd, Pb) by Azolla filiculoides from aqueous solution: A dataset. Data Brief. 2018, 21, 1409–1414. https://doi.org/10.1016/j.dib.2018.10.111
116. Dai L.P., Dong X.J., Ma H.H. Molecular mechanism for cadmium-induced anthocyanin accumulation in Azolla imbricata. Chemosphere. 2012, 87, 319–325. https://doi.org/10.1016/j.chemosphere.2011.12.005
117. Valderrama A., Carvajal D.E., Penailillo P., Tapia J. Accumulation capacity of cadmium and copper and their effects on photosynthetic performance in Azolla filiculoides lam. Under induced rhizofiltration. Gayana Bot. 2016, 73 (2), 283–291. https://dx.doi.org/10.4067/S0717-66432016000200283
118. Mohamed S., Mahrous A., Elshahat R., Kassem M. Accumulation of iron, zinc and lead by Azolla pinnata and Lemna minor and activity in contaminated water. Egyptian J. Chem. 2021, 64 (9), 5017–5030. https://doi.org/10.21608/ejchem.2021.50016.3036
119. Chakraborty S., Mishra A., Verma E., Tiwari B., Mishra A.K., Singh S.S. Physiological mechanisms of aluminum (Al) toxicity tolerance in nitrogen-fixing aquatic macrophyte Azolla microphylla Kaulf: phytoremediation, metabolic rearrangements, and antioxidative enzyme responses. Environ. Sci. Pollut. Res. 2019, 26, 9041–9054. https://doi.org/10.1007/s11356-019-04408-7
120. Zazouli M.A., Balarak D., Mahdavi Y. Pyrocatechol Removal From Aqueous Solutions by Using Azolla Filiculoides. Health Scope. 2013, 2 (1), 25–30. https://doi.org/10.17795/jhealthscope-9630
121. Maldonado I., Terrazas E.G.M., Vilca F.Z. Application of duckweed (Lemna sp.) and water fern (Azolla sp.) in the removal of pharmaceutical residues in water: State of art focus on antibiotics. Sci. Total Environ. 2022, 838 (4), 156565. https://doi.org/10.1016/j.scitotenv.2022.156565
122. De A.K., Sarkar B., Adak M.K. Physiological explanation of herbicide tolerance in Azolla pinnata R.Br. Ann. Agrarian Sci. 2017, 15 (3), 402–409. https://doi.org/10.1016/j.aasci.2017.05.021
123. Kösesakal T., Seyhan M. Phenanthrene stress response and phytoremediation potential of free-floating fern Azolla filiculoides Lam. Intern. J. Phytoremediation. 2022. https://doi.org/10.1080/15226514.2022.2069224
124. Triono S.T., Amin M., Putra A.M., Haryanto A. The utilization of wastewater from catfish pond to culture Azolla microphylla. Intern. J. Adv. Sciences, Engineering and Information. 2022, 12 (1), 423–430. https://doi.org/10.18517/ijaseit.12.1.12695
125. Rai P.K. Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int. J. Phytoremediation. 2008, 10(5), 430-439. https://doi.org/10.1080/15226510802100606
126. Mishra V.K., Tripathi B.D., Kim К.Н. Removal andaccumulation of mercury by aquatic macrophytes from an opencast coal mine effluent. J. Hazard Mater. 2009, 172(2-3), 749–754. https://doi.org/10.1016/j.jhazmat.2009.07.059
127. Rai P.K., Tripathi B.D. Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India. Environ. Monit. Assess. 2009, 148(1-4), 75–84. https://doi.org/10.1007/s10661-007-0140-2
128. Arora A., Sood А., Singh P.K. Hyperaccumulation of cadmium and nickel by Azolla species. Indian J. Plant Physiol. 2004, 9(3), 302– 304.
129. Rai P.K. Microcosom investigation of phytoremediation of Cr using Azolla pinnata. Int. J. Phytoremediation. 2010, 12(1), 96–104. https://doi.org/10.1080/15226510902767155
130. Arora A., Saxena S., Sharma D.K. Tolerance and phytoaccumulation of Chromium by three Azolla species. World J. Microbiol. Biotechnol. 2006, 22, 97–100. https://doi.org/10.1007/s11274-005-9000-9
131. Zhang X., Lin A.J., Zhao F.J., Xu G.Z., Duan G.L., Zhu Y.G. Arsenic accumulation by aquatic fern Azolla: comparisonof arsenate uptake, speciation and efflux by A.caroliniana and A.filiculoides. Environ. Pollut. 2008, 156(3), 1149–1155. https://doi.org/10.1016/j.envpol.2008.04.002
132. Stepniewska Z., Bennicelli R.P., Balakhnina T.I., Szajnocha K., Banach A., Woliñska A. Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. Intern. Agrophysics. 2005, 19(3), 251–255.
133. Sela M., Garty J., Tel-Or E. The accumulation and effect of heavy metal on the water fern Azolla filiculoides. New Phytologist. 1989, 112(1), 7–12. https://doi.org/10.1111/j.1469-8137.1989.tb00302.x
134. Dai L.P., Xiong Z.T., Huang Y., Li M.J. Cadmium-induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricate. Environ. Toxicol. 2006, 21(5), 505–512. https://doi.org/10.1002/tox.20212
135. Dhir B., Sharmila P., Saradhi, P.P. Potential of Aquatic Macrophytes for Removing Contaminants from the Environment. Crit. Rev. Environ. Sci. Technol. 2009, 39 (9), 754-781. https://doi.org/10.1080/10643380801977776
136. Rongxue Cui R., Nam S.-H., An Y.-J. Salvinia natans: A potential test species for ecotoxicity testing. Environ. Pol. 2020, 267, 115650. https://doi.org/10.1016/j.envpol.2020.115650
137. Mânzatu C., Nagy B. A., Iannelli R., Giannarelli S., Majdik C. Laboratory tests for the phytoextraction of heavy metals from polluted harbor sediments using aquatic plants. Marine Pollut. Bull. 2015, 101(2), 605–611. https://doi.org/10.1016/j.marpolbul.20Marin15.10.045
138. Dhir B., Srivastava S. Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans. Bull. Environ. Contam. Toxicol. 2013, 90 (6), 720–724. https://doi.org/10.1007/s00128-013-0988-5
139. Phetsombat S., Kruatrachue M., Pokethitiyook P., Upatham S. Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata. J. Environ. Biol. 2006, 27 (4), 645–652.
140. Kumari S., Kumar B., Sheel R. Bioremediation of Heavy Metals by Serious Aquatic Weed, Salvinia. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5 (9), 355–368. http://dx.doi.org/10.20546/ijcmas.2016.509.039
141. Bittu P., Ashis S., Swarnendu R. Growth and physio-biochemical responses of Azolla filiculoides subjected to short span of phenol exposure. Research Square. 2021. https://doi.org/10.21203/rs.3.rs-416354/v1