ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta Т. 14, No. 6 , 2021
P. 71-79, Bibliography 34, Engl.
UDC: 579.262
https://doi.org/10.15407/biotech14.06.071
A. I. Olkhovska, K. О. Drobot, A. M. Shakhovsky, N. A. Matvieieva
Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv
Artemisia absinthium L. plants are known as producers of substances with antioxidant properties. Among others, phenols and flavonoids are found in these plants. The synthesis of these bioactive compounds can be activated by genetic transformation. This process can be carried out even without the transfer of specific genes involved in the synthesis of flavonoids. Thus, “hairy” roots, obtained after Agrobacterium rhizogenes – mediated transformation, can produce a variety of valuable substances.
The aim of the study was to obtaine A. absinthium “hairy” roots with high phenolic content.
Methods. “Hairy” roots of plants were obtained by co-cultivation leaves with suspension of A. rhizogenes with pCB124 vector. The presence of transferred genes was confirmed by PCR. The reactions with AlCl3 and Folin-Ciocalteu reagent were used to determine the total flavonoids and phenols content. The antioxidant activity of extracts was evaluated by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity.
Results. PCR analysis detected the presence of bacterial rol genes and the absence of рСВ124 plasmid genes. Root lines differed in growth rate. “Hairy” roots were characterized by a higher phenolic content, particularly flavonoids (up to 4.784 ± 0.10 mg/g FW) compared to control (3.861±0.13 mg/g FW). Also, extracts from transgenic roots demonstrated higher antioxidant activity in the reaction with DPPH reagent (EC50 = 3.657 mg) when compared with extracts from control plants (EC50 = 6,716 mg).
Conclusions. Transformation of A. absinthium mediated by A. rhizogenes can be applied for obtaining transgenic root lines with increased phenolic content and higher antioxidant activity.
Key words. Artemisia absinthium L., Agrobacterium rhizogenes-mediated transformation, “hairy” roots of plants, flavonoids, phenolic compounds, antioxidant activity.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2021
References
1. Batiha G. E.-S., Olatunde A., El-Mleeh A., Hetta H. F., Al-Rejaie S., Alghamdi S., Zahoor M., Beshbishy A. M., Murata T., Zaragoza-Bastida A., Rivero-Perez N. Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Wormwood (Artemisia absinthium). Antibiotics. 2020, 9 (6), 353. https://doi.org/10.3390/antibiotics9060353
2. Bora K. S., Sharma A. Evaluation of antioxidant and free-radical scavenging potential of Artemisia absinthium. Pharm. Biol. 2011, 49 (12), 1216–1223. https://doi.org/10.3109/13880209.2011.578142
3. Shahnazi M., Azadmehr A., Hajiaghaee R., Mosalla S., Latifi R. Effects of Artemisia Absinthium L. Extract on the Maturation and Function of Dendritic Cells. Jundishapur J. Nat. Pharm. Prod. 2015, 10 (2), 1–6. https://doi.org/10.17795/jjnpp-20163
4. Boudjelal A., Smeriglio A., Ginestra G., Denaro M., Trombetta D. Phytochemical Profile, Safety Assessment and Wound Healing Activity of Artemisia absinthium L. Plants. 2020, 9 (12), 1744. https://doi.org/10.3390/plants9121744
5. Hadi A., Hossein N., Shirin P., Najmeh N., Abolfazl M. Anti-inflammatory and Analgesic Activities of Artemisia absinthium and Chemical Composition of its Essential Oil. Int. J. Pharm. Sci. Rev. Res. 2014, 24 (2), 237–244.
6. Koyuncu I. Evaluation of anticancer, antioxidant activity and phenolic compounds of Artemisia absinthium L. Extract. Cellular and Molecular Biology. 2018, 64 (3), 25–34. https://doi.org/10.14715/cmb/2018.64.3.5
7. Shafi N., Khan G. A., Ghauri E. G. Antiulcer effect of Artemisia absinthium L. in rats. Pakistan Journal of Scientific and Industrial Research. 2004, 47 (2), 130–134.
8. Kordali S., Kotan R., Mavi A., Cakir A., Ala A., Yildirim A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum, and Artemisia spicigera essential oils. J. Agric. Food Сhem. 2005, 53 (24), 9452–9458. https://doi.org/10.1021/jf0516538
9. Julio L. F. Nematicidal activity of the hydrolate byproduct from the semi industrial vapor pressure extraction of domesticated Artemisia absinthium against Meloidogyne javanica. Crop Protection. 2017, V. 94, P. 33–37. https://doi.org/10.1016/j.cropro.2016.12.002
10. Bora K. S., Sharma A. Neuroprotective effect of Artemisia absinthium L. on focal ischemia and reperfusion-induced cerebral injury. J. Ethnopharmacol. 2010, 129 (3), 403–409. https://doi.org/10.1016/j.jep.2010.04.030
11. Amat N., Upur H., Bla?ekovi? B. In vivo hepatoprotective activity of the aqueous extract of Artemisia absinthium L. against chemically and immunologically induced liver injuries in mice. J. Ethnopharmacol. 2010, 131 (2), 478–484. https://doi.org/10.1016/j.jep.2010.07.023
12. Daradka H. M., Abas M. M., Mohammad M. Antidiabetic effect of Artemisia absinthium extracts on alloxan-induced diabetic rats. Comp. Clin. Path. 2014, 23 (6), 1733–1742. https://doi.org/10.1007/s00580-014-1963-1
13. Turak A., Shi S.-P., Jiang Y., Tu P. F. Dimeric guaianolides from Artemisia absinthium. Phytochemistry. 2014, V. 105, P. 109–114. https://doi.org/10.1016/j.phytochem.2014.06.016
14. Pietta P. G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63 (7), 1035–1042. https://doi.org/10.1021/np9904509
15. Pisoschi A. M., Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, V. 97, P. 55–74. https://doi.org/10.1016/j.ejmech.2015.04.040
16. Giri A., Narasu M. L. Transgenic hairy roots: recent trends and applications. Biotechnol. Adv. 2000, V. 18, P. 1–22. https://doi.org/10.1016/S0734-9750(99)00016-6
17. Bulgakov V. P. Functions of rol genes in plant secondary metabolism. Biotechnol. Adv. 2008, V. 26, P. 318–324. https://doi.org/10.1016/j.biotechadv.2008.03.001
18. Balasubramanian M., Anbumegala M., Surendran R., Run M., Shanmugam G. Elite hairy roots of Raphanus sativus (L.) as a source of antioxidants and flavonoids. 3 Biotech. 2018, V. 8, P. 128. https://doi.org/10.1007/s13205-018-1153-y
19. Ono N. N., Tian L. The multiplicity of hairy root cultures: prolific possibilities. Plant Sci. 2011, 180 (3), 439–446. https://doi.org/10.1016/j.plantsci.2010.11.012
20. Chandra S. Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnol. Lett. 2012, 34 (3), 407–415. https://doi.org/10.1007/s10529-011-0785-3
21. Kim Y., Wyslouzil B. E., Weathers P. J. Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell. Dev. Biol.-Plant. 2002, 38 (1), 1–10. www.jstor.org/stable/20171597. https://doi.org/10.1079/IVP2001243
22. Abraham J., Thomas T. D. Hairy Root Culture for the Production of Useful Secondary Metabolites. Biotechnology and Production of Anti-Cancer Compounds. 2017, P. 201–230. https://doi.org/10.1007/978-3-319-53880-8_9
23. Balasubramani S., Ranjitha Kumari B. D., Moola A. K., Sathish D., Prem Kumar G., Srimurali S., Babu Rajendran R. Enhanced Production of ?-Caryophyllene by Farnesyl Diphosphate Precursor-Treated Callus and Hairy Root Cultures of Artemisia vulgaris L. Front. Plant Sci. 2021, V. 12, P. 634178. https://doi.org/10.3389/fpls.2021.634178
24. Zheng L. P., Guo Y. T., Wang J. W., Tan R. X. Nitric oxide potentiates oligosaccharide-induced artemisinin production in Artemisia annua hairy roots. J. Integr. Plant Biol. 2008, 50 (1), 49–55. https://doi.org/10.1111/j.1744-7909.2007.00589.x
25. Pala Z., Shukla V., Alok A., Kudale S., Desai N. Enhanced production of an anti-malarial compound artesunate by hairy root cultures and phytochemical analysis of Artemisia pallens Wall. 3 Biotech. 2016, 6 (2), 182. https://doi.org/10.1007/s13205-016-0496-5
26. Nin S., Bennici A., Roselli G., Mariotti D., Schiff S., Magherini R. Agrobacterium-mediated transformation of Artemisia absinthium L. (wormwood) and production of secondary metabolites. Plant Cell Reports. 1997, 16 (10), 725–730. https://doi.org/10.1007/s002990050310. PMID: 30727627
27. Leth I. K., McDonald K. A. Media development for large scale Agrobacterium tumefaciens culture. Biotechnology Progress. 2017, 33 (5), 1218–1225. https://doi.org/10.1002/btpr.2504
28. Aboul-Maaty N. A. F., Oraby H. A. S. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull. Nat. Res. Centre. 2019, 43 (25). https://doi.org/10.1186/s42269-019-0066-1
29.. Singleton V. L, Orthofer R., Lamuela-Ravent?s R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, Academic Press. 1999, V. 299, P. 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1
30. P?kal A., Pyrzynska K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods. 2014, V. 7, P. 1776–1782. https://doi.org/10.1007/s12161-014-9814-x
31. Brand-Williams W., Cuvelier M. E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology. 1995, 28 (1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
32. Tavassoli P., Safipour Afshar A. Influence of different Agrobacterium rhizogenes strains on hairy root induction and analysis of phenolic and flavonoid compounds in marshmallow (Althaea officinalis L.). 3 Biotech. 2018, 8 (8), 351. https://doi.org/10.1007/s13205-018-1375-z
33. Sahayarayan J. J., Udayakumar R., Arun M., Ganapathi A., Alwahibi M. S., Aldosari N. S., Morgan A. Effect of different Agrobacterium rhizogenes strains for in vitro hairy root induction, total phenolic, flavonoids contents, antibacterial and antioxidant activity of (Cucumis anguria L.). Saudi J. Biol. Sci. 2020, 27 (11), 2972–2979. https://doi.org/10.1016/j.sjbs.2020.08.050
34. El-Esawi M. A., Elkelish A., Elansary H. O., Ali H. M., Elshikh M., Witczak J., Ahmad M. Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L. Oxid. Med. Cell. Longev. 2017, V. 2017, P. 5604746. https://doi.org/10.1155/2017/5604746