ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 4, 2021
Р. 53-63, Bibliography 48, English
Universal Decimal Classification: 602.6:577.2.18:577.112:582.661.21
https://doi.org/10.15407.biotech14.04.053
TRANSIENT EXPRESSION OF REPORTER GENES IN CULTIVARS OF Amaranthus caudatus L.
Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv
Local cultivars of A. caudatus: Helios and Karmin were used as plant material. Amaranth is a new pseudocereal introduced in Ukraine. The plant biomass of amaranth is used in medicine, food industry and cosmetology industry.
Aim. The purpose of the work was to identify the optimal conditions for the transient expression of reporter genes in Amaranthus caudatus cultivars.
Methods. Biochemical and microscopy methods were used in the following work. Seedlings and adult plants of different age were infiltrated with agrobacterial suspensions separately (genetic vector pCBV19 with a uidA gene and genetic vector pNMD2501 with a gfp gene in Agrobacterium tumefaciens GV3101 strain).
Results. Transient expression of the uidA and gfp genes was obtained in amaranth plants after conduction series of experiments. The most intensive transient expression of gfp and uidA genes was observed in seedlings infiltrated at the age of 1 day. The maximum fluorescence of the GFP protein was observed on 5th–6th days.
Conclusions. It was shown that the cultivar Helios was more susceptible to agrobacterial infection than the cultivar Karmin. The effectiveness of Agrobacterium mediated transformation was from 16% to 95% for the Helios cultivar and from 12% to 93% for the Karmin cultivar. The obtained results indicate that the studied amaranth cultivars can potentially be used for obtaining transient expression of target genes and synthesizing target proteins in their tissues in the future.
Key words: Amaranthus, uidA, gfp, Agrobacterium, transient expression.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Guidarelli M., Baraldi E. Transient transformation meets gene function discovery: The strawberry fruit case. Front. Plant Sci. 2015, V. 6, P. 444.https://doi.org/10.3389/fpls.2015.00444
2. Viacheslavova A. O., Berdychevets Y. N., Tiuryn A. A., Shymshylashvyly Kh. R., Mustafaev O., Holdenkova-Pavlova Y. V. Expression of heterologous genes in plant systems: New possibilities. Russ. J. Genet. 2013, V. 48, P. 1067–1079. https://doi.org/10.1134/S1022795412110130
3. Cao J., Yao D., Lin F., Jiang M. PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: A valuable tool for signal transduction study in maize. Acta Physiol. Plant. 2014, V. 36, P. 1271–1281. https://doi.org/10.1007/s11738-014-1508-x
4. Zhang Y., Su J., Duan S., Ao Y., Dai J., Liu J., Wang P., Li Y., Liu B., Feng D., Wang J., Wang H. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods. 2011, V. 7, P. 30. https://doi.org/10.1186/1746-4811-7-30
5. Chen Q., Lai H. Gene delivery into plant cells for recombinant protein production. Biomed. Res. Int. 2015, P. 932161. https://doi.org/10.1155/2015/932161
6. Shoji T. Analysis of the intracellular localization of transiently expressed and fluorescently labeled copper-containing amine oxidases, diamine oxidase and N-methylputrescine oxidase in tobacco, using an Agrobacterium infiltration protocol. Methods Mol. Biol. 2018, V. 1694, P. 215–223. https://doi.org/10.1007/978-1-4939-7398-9_20
7. Sun X., Yu G., Li J., Liu J., Wang X., Zhu G., Zhang X., Pan H. AcERF2, an ethylene-responsive factor of Atriplex canescens, positively modulates osmotic and disease resistance in Arabidopsis thaliana. Plant Sci. 2018, V. 274, P. 32–43. https://doi.org/10.1016/j.plantsci.2018.05.004
8. Guo Y.-F., Shan W., Liang S.-M., Wu C.-J., Wei W., Chen J.-Y., Lu W.-J., Kuang J.-F. MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit. Physiol. Plant. 2019, V. 165, P. 555–568. https://doi.org/10.1111/ppl.12750
9. Tyurin A. A., Kabardaeva K. V., Berestovoy M. A., Sidorchuk Yu. V., Fomenkov A. A., Nosov A. V., Goldenkova-Pavlova I. V. Simple and reliable system for transient gene expression for the characteristic signal sequences and the estimation of the localization of target protein in plant cell. Russ. J. Plant Physiol. 2017, V. 64, P. 672–679. https://doi.org/10.1134/S1021443717040173
10. Hua-Ying M., Wen-Ju W., Wei-Hua S., Ya-Chun S., Feng L., Cong-Na L., Ling W., Xu Z., Li-Ping X., You-Xiong Q. Genome-wide identification, phylogeny, and expression analysis of Sec14-like PITP gene family in sugarcane. Plant Cell Rep. 2019, V. 38, P. 637–655. https://doi.org/10.1007/s00299-019-02394-1
11. Olmedo P., Moreno A. A., Sanhueza D., Balic I., Silva-Sanzana C., Zepeda B., Verdonk J. C., Arriagada C., Meneses C., Campos-Vargas R. A catechol oxidase AcPPO from cherimoya (Annona cherimola Mill.) is localized to the Golgi apparatus. Plant Sci. 2018, V. 266, P. 46–54. https://doi.org/10.1016/j.plantsci.2017.10.012
12. Cheng J., Wen S., Xiao Sh., Lu B., Ma M., Bie Z. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. J. Exp. Bot. 2018, V. 69, P. 511–523. https://doi.org/10.1093/jxb/erx440
13. Wang B., Wang G., Shen F., Zhu S. A glycine-rich RNA-binding protein, CsGR-RBP3, is involved in defense responses against cold stress in harvested cucumber (Cucumis sativus L.) fruit. Front. Plant Sci. 2018, V. 9, P. 540. https://doi.org/10.3389/fpls.2018.00540
14. Wu B., Cao X., Liu H., Zhu C., Klee H., Zhang B., Chen K. UDP-glucosyltransferase PpUGT85A2 controls volatile glycosylation in peach. J. Exp. Bot. 2019, V. 70, P. 925–936. https://doi.org/10.1093/jxb/ery419
15. Martins P. K., Nakayama T. J., Ribeiro A. P., Dias B. A., Cunha B. D., Nepomuceno A. L., Harmon F. G., Kobayashi A. K., Molinari H. B. C. Setaria viridis floral-dip: a simple and rapid Agrobacterium-mediated transformation method. Biotechnol. Rep.. 2015, V. 6, P. 61–63. https://doi.org/10.1016/j.btre.2015.02.006
16. Yaroshko O., Kuchuk M. Agrobacterium-caused transformation of cultivars Amaranthus caudatus L. and hybrids of A. caudatus L. x A. paniculatus L. Int. J. Secondary Metabolite. 2018, 5 (4), 312–318. https://doi.org/10.21448/ijsm.478267
17. Jefferson R. A. Assaying chimeric genes in plants: The gus gene fusion system. Plant Mol. Biol. Rep. 1987, 5 (4), 387–405. https://doi.org/10.1007/BF02667740
18. Wang F.-P., Wang X.-F., Zhang J. Modulates Fe homeostasis by directly binding to the MdMATE43 promoter in plants. Plant Cell Physiol. 2018, V. 59, P. 2476–2489. https://doi.org/10.1093/pcp/pcy168
19. Wang Y.-C., Yu M., Shih P.-Y., Wu H.-Y., Lai E.-M. Stable pH suppresses defense signaling and is the key to enhance Agrobacterium-mediated transient expression in Arabidopsis seedlings. Sci. Rep. 2018, V. 8, P. 17071. https://doi.org/10.1038/s41598-018-34949-9
20. Noman A., Liu Z., Yang S., Shen L., Hussain A., Ashraf M. F., Khan M. I., He S. Expression and functional evaluation of CaZNF830 during pepper response to Ralstonia solanacearum or high temperature and humidity. Microb. Pathog. 2018, V. 118, P. 336–346. https://doi.org/10.1016/j.micpath.2018.03.044
21. Kim N. H., Hwang B. K. Pepper pathogenesis-related protein 4c is a plasma membrane-localized cysteine protease inhibitor that is required for plant cell death and defense signaling. The Plant J. 2015, V. 81, P. 81–94. https://doi.org/10.1111/tpj.12709
22. Han J., Liu H.-T., Wang Sh.-Ch., Wang C.-R., Miao G.-P. A class I TGA transcription factor from Tripterygium wilfordii Hook.f. modulates the biosynthesis of secondary metabolites in both native and heterologous hosts. Plant Sci. 2020, V. 290, P. 110293.https://doi.org/10.1016/j.plantsci.2019.110293
23. Mertens J., Moerkercke A. V., Bossche R. V., Pollier J., Goossens A. Clade IVa basic helix–loop–helix transcription factors form part of a conserved jasmonate signaling circuit for the regulation of bioactive plant terpenoid biosynthesis. Plant Cell Physiol. 2016, V. 57, P. 2564–2575. https://doi.org/10.1093/pcp/pcw168
24. Lange M. J., Lange T. Ovary-derived precursor gibberellin A9 is essential for female flower development in cucumber. Development. 2016, V. 143, P. 4425–4429.https://doi.org/10.1242/dev.135947
25. Xie Y.-G., Ma Ya.-Ya, Bi P.-P., Wei W., Liu J., Hu Y., Gou Y.-J., Zhu D., Wen Y.-Q., Feng J.-Y. Transcription factor FvTCP9 promotes strawberry fruit ripening by regulating the biosynthesis of abscisic acid and anthocyanins. Plant Physiol. Biochem. 2020, V. 146, P. 374–383. https://doi.org/10.1016/j.plaphy.2019.11.004
26. Huang J., Gu L., Zhang Y., Yan T., Kong G., Kong L., Guo B., Qiu M., Wang Y., Jing M., Xing W., Ye W., Wu Z., Zhang Z., Zheng X., Gijzen M., Wang Y., Dong S. An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nature Communications. 2017, V. 8, P. 2051. https://doi.org/10.1038/s41467-017-02233-5
27. Gascuel Q., Buendia L., Pecrix Ya., Blanchet N., Mu?os S., Vear F., Godiard L. RXLR and CRN effectors from the sunflower downy mildew pathogen Plasmopara halstedii Induce hypersensitive-like responses in resistant sunflower lines. Front Plant Sci. 2016, V. 7, P. 1887. https://doi.org/10.3389/fpls.2016.01887
28. Yang G., Gao X., Ma K., Li D., Jia C., Zhai M., Xu Z. The walnut transcription factor JrGRAS2 contributes to high temperature stress tolerance involving in Dof transcriptional regulation and HSP protein expression. BMC Plant Biol. 2018, V. 18, P. 367.https://doi.org/10.1186/s12870-018-1568-y
29. Yang G., Zhang W., Liu Z., Yi-Maer A.-Y., Zhai M., Xu Z. Both JrWRKY2 and JrWRKY7 of Juglans regia mediate responses to abiotic stresses and abscisic acid through formation of homodimers and interaction. Plant Biol. (Stuttg). 2017, V. 19, P. 268–278. https://doi.org/10.1111/plb.12524
30. Rosenthal S. H. An intronless form of the tobacco extensin gene terminator strongly enhances transient gene expression in plant leaves. Plant Mol. Biol. 2018, V. 96, P. 429–443. https://doi.org/10.1007/s11103-018-0708-y
31. Sakamoto S., Matsui K., Oshima Y., Mitsuda N. Efficient transient gene expression system using buckwheat hypocotyl protoplasts for large-scale experiments. Breed Sci. 2020, 70 (1), 128–134. https://doi.org/10.1270/jsbbs.19082
32. Mooney B. C., Graciet E. A simple and efficient Agrobacterium – mediated transient expression system to dissect molecular processes in Brassica rapa and Brassica napus. 2020. https://doi.org/10.1002/pld3.237
33. Situ J. An RXLR effector PlAvh142 from Peronophythora litchii triggers plant cell death and contributes to virulence. Mol. Plant Pathol. 2020, V. 21, P. 415–428. https://doi.org/10.1111/mpp.12905
34. Grijalva-Manay R., Dorca-Fornell C., Enr?quez-Villacreses W., Mi?o-Castro G., Oliva R., Ochoa V., Proa?o-Tuma K., Armijos-Jaramilloc V. DnaJ molecules as potential effectors in Meloidogyne arenaria. An unexplored group of proteins in plant parasitic nematodes. Commun. Integr. Biol. 2019, V. 12, P. 151–161. https://doi.org/10.1080/19420889.2019.1676138
35. Santos C. M., Romeiro D., Silva J. P., Basso M. F., Molinari H. B. C., Centeno D. C. An improved protocol for efficient transformation and regeneration of Setaria italica. Plant Cell Rep. 2020, V. 39, P. 501–510. https://doi.org/10.1007/s00299-019-02505-y
36. Poborilova Z., Plchova H., Cerovska N., Gunter C. J., Hitzeroth I. I., Rybicki E. P., Moravec T. Transient protein expression in tobacco BY-2 plant cell packs using single and multi-cassette replicating vectors. Plant Cell Rep. 2020, V. 39, P. 1115–1127. https://doi.org/10.1007/s00299-020-02544-w
37. Jurani? M. Nagahatenna D. S. K., Salinas-Gamboa R., Hand M. L., S?nchez-Le?n N., Leong W. H., How T., Bazanova N., Spriggs A., Vielle-Calzada J.-P., Koltunow A. M. G. A detached leaf assay for testing transient gene expression and gene editing in cowpea (Vigna unguiculata [L.] Walp.). Plant Methods. 2020, V. 16, P. 88. https://doi.org/10.1186/s13007-020-00630-4
38. Castellanos-Ar?valo A. P., Estrada-Luna A. A., Cabrera-Ponce J. L. Valencia-Lozano E., Herrera-Ubaldo H., de Folter S., Blanco-Labra A., D?lano-Frier J. P. Agrobacterium rhizogenes-mediated transformation of grain (Amaranthus hypochondriacus) and leafy (A. hybridus) amaranths. Plant Cell Rep. 2020, V. 39, P. 1143–1160.https://doi.org/10.1007/s00299-020-02553-9
39. Burman N., Chandran D., Khurana J. P. A rapid and highly efficient method for transient gene expression in rice plants. Frontiers in Plant Science. 2020, V. 11, P. 584011. https://doi.org/10.3389/fpls.2020.584011
40. Sood P., Singh R. K., Prasad M. An efficient Agrobacterium-mediated genetic transformation method for foxtail millet (Setaria italica L.). Plant Cell Rep. 2020, V. 39, P. 511–525. https://doi.org/10.1007/s00299-019-02507-w
41. Torti S., Schlesier R., Th?mmler A., Bartels D., R?mer P., Koch B., Werner S., Panwar V., Kanyuka K., von Wir?n N., Jones J. D. G., Hause G., Giritch A., Gleba Y. Transient reprogramming of crop plants for agronomic performance. Nat. Plants. 2021, 7 (2), 159–171. https://doi.org/10.1038/s41477-021-00851-y
42. Sorokin A., Yadav N., Gaudet D., Kovalchuk I. Transient expression of the ?-glucuronidase gene in Cannabis sativa varieties. Plant Signaling & Behavior. 2020, V. 15, P. 8. https://doi.org/10.1080/15592324.2020.1780037
43. Yaroshko O., Vasylenko M., Gajdo?ov? A., Morgun B. "Floral-dip" transformation of Amaranthus caudatus L. and hybrids A. caudatus ? A. paniculatus L. Biologija. 2019, 64 (4), 321–330. https://doi.org/10.6001/biologija.v64i4.3904
44. Jasik Ja., Schiebold S., Rolletschek H., Denolf P., Van Adenhove K., Altmann T., Borisjuk L. Subtissue-specific evaluation of promoter efficiency by quantitative fluorometric assay in laser microdissected tissues of rapeseed. Plant Physiol. 2011, 157 (2), 563–573. https://doi.org/10.1104/pp.111.180760
45. Knoll K. A., Short K., Curtis I., Power B., Davey M. R. Shoot regeneration from cultured root explants of spinach (Spinacia oleracea L.): a system for Agrobacterium transformation. Plant Cell Rep. 1997, 17 (2), 96–101 https://doi.org/10.1007/s002990050359
46. Muthu T. Establishment of an efficient Agrobacterium tumefaciens-mediated leaf disc transformation of spine gourd (Momordica dioica Roxb. Ex Willd). African J. Biotechnol. 2011, 10 (83) https://doi.org/10.5897/AJB11.2377
47. Zhang H.-X., Zeevaart J. A. D. An efficient Agrobacterium tumefaciens-mediated transformation and regeneration system for cotyledons of spinach (Spinacia oleracea L.). Plant Cell Rep. 1999, 18 (7–8), 640–645. https://doi.org/10.1007/s002990050635
48. Yaacob J. S., Hwei L. C., Taha R. M. Pigment analysis and tissue culture of Amaranthus cruentus L. Acta horticulturae. 2012, P. 54–64. https://doi.org/10.17660/ActaHortic.2012.958.20