ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 14, No 2, 2021
Р. 5-18, Bibliography 92, English
Universal Decimal Classification: 577.175.1:58.02:661.162.65
https://doi.org/10.15407/biotech14.02.005
GIBBERELLINS IN REGULATION OF PLANT GROWTH AND DEVELOPMENT UNDER ABIOTIC STRESSES
I. V. Kosakivska, V. A. Vasyuk
Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv
Background. Gibberellins (GAs), a class of diterpenoid phytohormones, play an important role in regulation of plant growth and development. Among more than 130 different gibberellin molecules, only a few are bioactive. GA1, GA3, GA4, and GA7 regulate plant growth through promotion the degradation of the DELLA proteins, a family of nuclear growth repressors – negative regulator of GAs signaling. Recent studies on GAs biosynthesis, metabolism, transport, and signaling, as well as crosstalk with other phytohormones and environment have achieved great progress thanks to molecular genetics and functional genomics.
Aim. In this review, we focused on the role of GAs in regulation of plant gtowth in abiotic stress conditions. Results. We represented a key information on GAs biosynthesis, signaling and functional activity; summarized current understanding of the crosstalk between GAs and auxin, cytokinin, abscisic acid and other hormones and what is the role of GAs in regulation of adaptation to drought, salinization, high and low temperature conditions, and heavy metal pollution. We emphasize that the effects of GAs depend primarily on the strength and duration of stress and the phase of ontogenesis and tolerance of the plant. By changing the intensity of biosynthesis, the pattern of the distribution and signaling of GAs, plants are able to regulate resistance to abiotic stress, increase viability and even avoid stress. The issues of using retardants – inhibitors of GAs biosynthesis to study the functional activity of hormones under abiotic stresses were discussed. Special attention was focused on the use of exogenous GAs for pre-sowing priming of seeds and foliar treatment of plants.
Conclusion. Further study of the role of gibberellins in the acquisition of stress resistance would contribute to the development of biotechnology of exogenous use of the hormone to improve growth and increase plant yields under adverse environmental conditions.
Key words: gibberellins, DELLA, phytohormones, abiotic stresses, retardants, growth, stress resistance.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2021
References
1. Davies P. J. The plant hormones: their nature, occurrence, and function. Plant Hormones: Biosynthesis, Signal Transduction, Action. Davies P. J. (Ed.). Dordrecht: Springer. 2010, P. 1-15. https://doi.org/10.1007/978-1-4020-2686-7_1 |
||||
2. Sponsel V., Hedden P. Gibberellin Biosynthesis and Inactivation. Plant Hormones. Davies P. J. (Ed.). Springer, Dordrecht. 2010, P. 63-94. https://doi.org/10.1007/978-1-4020-2686-7_4 |
||||
3. Vera-Sirera F., Gomez M. D., Perez-Amador M. A. DELLA proteins, a group of GRAS transcription regulators that mediate gibberellin signaling. Plant Transcription Factors. Evolutionary, Structural and Functional Aspects. Gonzalez D. H. (Ed.). Elsevier. 2016, P. 313-328. https://doi.org/10.1016/B978-0-12-800854-6.00020-8 |
||||
4. Colebrook E. H., Thomas S. G., Phillips A. L., Hedden P. The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Biol. 2014, 217 (1), 67-75. https://doi.org/10.1242/jeb.089938 |
||||
5. Hedden P. The Current Status of Research on Gibberellin Biosynthesis. Plant Cell Physiol. 2020, 61 (11), 1832-1849. https://doi.org/10.1093/pcp/pcaa092 |
||||
6. Gao X., Zhang Yi., He Z., Fu X. Gibberellins. Hormone Metabolism and Signaling in Plants. Li J. (Ed). 2017, P. 107-160. https://doi.org/10.1016/B978-0-12-811562-6.00004-9 |
||||
7. Binenbaum J., Weinstain R., Shani E. Gibberellin localization and transport in plants. Trends Plant Sci. 2017, 23 (5), 410-421. https://doi.org/10.1016/j.tplants.2018.02.005 |
||||
8. Davi?re J. M., Achard P. A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Mol. Plant. 2016, 9 (1), 10-20. https://doi.org/10.1016/j.molp.2015.09.011 |
||||
9. Xue L., Cui H., Buer B., Vijayakumar V., Delaux P-M., Junkermann S., Bucher M. Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiol. 2015, 167 (3), 854-871. https://doi.org/10.1104/pp.114.255430 |
||||
10. Dill A., Sun T. Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics. 2001, 159 (2), 777-785. https://doi.org/10.1093/genetics/159.2.777 |
||||
11. Hirsch S., Oldroyd G. E. D. GRAS-domain transcription factors that regulate plant development. Plant Signal Behav. 2014, 4 (8), 698-700. https://doi.org/10.4161/psb.4.8.9176 |
||||
12. Hirano K., Kouketu E., Katoh H., Aya K., Ueguchi-Tanaka M., Matsuoka M. The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. Plant J. 2012, 71 (3). 443-453. https://doi.org/10.1111/j.1365-313X.2012.05000.x |
||||
13. Weston D. E., Elliott R. C., Lester D. R., Rameau C., Reid J. B., Murfet I. C., Ross J. J. The Pea DELLA proteins LA and CRY are important regulators of gibberellin synthesis and root growth. Plant Physiol. 2008, 147 (1), 199-205. https://doi.org/10.1104/pp.108.115808 |
||||
14. Zhang Z. L., Ogawa M., Fleet C. M., Zentella R., Hu J., Heo J-O., Lim J., Kamiya Y., Yamaguchi S., Sun T-P. Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011, 108 (5), 2160-2165. https://doi.org/10.1073/pnas.1012232108 |
||||
15. Gantait S., Sinniah U. R., Ali M. N., Sahu N. C. Gibberellins - a multifaceted hormone in plant growth regulatory network. Curr. Protein Pept. Sci. 2015, 16 (5), 406-412. https://doi.org/10.2174/1389203716666150330125439 |
||||
16. Gupta R., Chakrabarty S. K. Gibberellic acid in plant: Still a mystery unresolved. Plant Signal Behav. 2013, 8 (9), e25504. https://doi.org/10.4161/psb.25504 |
||||
17. Tsygankova V. A. Genetic Control and Phytohormonal Regulation of Plant Embryogenesis. Int. J. Med. Biotechnol. Genetics (IJMBG). 2015, 3 (1), 9-20. https://doi.org/10.19070/2379-1020-150003 |
||||
18. Finkelstein R., Reeves W., Ariizumi T., Steber C. Molecular aspects of seed dormancy. Ann. Rev. Plant Biol. 2008, V. 59, P. 387-415. https://doi.org/10.1146/annurev.arplant.59.032607.092740 |
||||
19. Kaneko M., Itoh H., Inukai Y., Sakamoto T., Ueguchi-Tanaka M., Ashikari M., Matsuoka М. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J. 2003, 35 (1), 104-115. https://doi.org/10.1046/j.1365-313X.2003.01780.x |
||||
20. Gubler F., Kalla R., Roberts J. K., Jacobsen J. V. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell. 1995, 7 (11), 1879-1891. https://doi.org/10.1105/tpc.7.11.1879 |
||||
21. Zentella R., Yamauchi D., Ho T. H. Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells. Plant Cell. 2002, V. 14, P. 2289-2301. https://doi.org/10.1105/tpc.003376 |
||||
22. Sun T. Gibberellin Signal Transduction in Stem Elongation & Leaf Growth. Plant Hormones. Davies P. J. (Ed.). Springer, Dordrecht. 2010, P. 308-328. https://doi.org/10.1007/978-1-4020-2686-7_15 |
||||
23. Uozu S., Tanaka-Ueguchi M., Kitano H., Hattori K., Matsuoka M. Characterization of XET-related genes of rice. Plant Physiol. 2000, 122 (3), 853-859. https://doi.org/10.1104/pp.122.3.853 |
||||
24. Fabian T., Lorbiecke R., Umeda M., Sauter M. The cell cycle genes cycA1;1 and cdc2Os-3 are coordinately regulated by gibberellin in planta. Planta. 2000, 211 (3), 376-383. https://doi.org/10.1007/s004250000295 |
||||
25. Sakamoto T., Kamiya N., Ueguchi-Tanaka M., Iwahori S., Matsuoka M. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev. 2001, V. 15, P. 581-90. https://doi.org/10.1101/gad.867901 |
||||
26. Li H., Torres-Garcia J., Latrasse D., Benhamed M., Schilderink S., Zhou W., Kulikova O., Hirt H., Bisseling T. Plant-specific histone deacetylases HDT1/2 regulate GIBBERELLIN 2-OXIDASE2 expression to control Arabidopsis root meristem cell number. The Plant Cell. 2017, V. 29, P. 2183-2196. https://doi.org/10.1105/tpc.17.00366 |
||||
27. Ragni L., Kaisa Nieminen K., Pacheco-Villalobos D., Sibout R., Schwechheimer C., Hardtke C. S. Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. The Plant Cell. 2011, V. 23, P. 1322-1336. https://doi.org/10.1105/tpc.111.084020 |
||||
28. Llanes A., Andrade A., Alemano S., Luna V. Alterations of endogenous hormonal levels in plants under drought and salinity. Am. J. Plant Sci. 2016, V. 7, P. 1357-1371. https://doi.org/10.4236/ajps.2016.79129 |
||||
29. Vettakkorumakankav N. N., Falk D., Saxena P., Fletcher P. R. A. A crucial role for gibberellins in stress protection of plants. Plant Cell Physiol. 1999, 40 (5), 542-548. https://doi.org/10.1093/oxfordjournals.pcp.a029575 |
||||
30. Lo S. F., Ho T. H. D., Liu Y. L., Jiang M. J., Hsieh K. T., Chen K. T., Yu L-C., Lee M-H., Chen C-Y., Huang T-P., Kojima M., Sakakibara H., Chen L-J., Yu S-M. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice. Plant Biotechnol. J. 2017, 15 (7), 850-864. https://doi.org/10.1111/pbi.12681 |
||||
31. Abass S., Mohamed H. Alleviation of Adverse Effects of Drought Stress on Common Bean (Phaseolus vulgaris L.) by Exogenous Application of Hydrogen Peroxide. Bangladesh J. Bot. 2011, V. 40, P. 75-83. https://doi.org/10.3329/bjb.v40i1.8001 |
||||
32. Yang J. C., Zhang J. H., Wang Z. Q., Zhu Q. S., Wang W. Hormonal Changes in the Grains of Rice Subjected to Water Stress during Grain Filling. Plant Physiol. 2001, 127 (1), 315-323. https://doi.org/10.1104/pp.127.1.315 |
||||
33. Krugman T., Peleg Z., Quansah L., Chagu? V., Korol A. B., Nevo E., Saranga Y., Fait A., Chalhoub B., Fahima T. Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Funct. Int. Genom. 2011, V. 11, P. 565-583. https://doi.org/10.1007/s10142-011-0231-6 |
||||
34. Liu F., Wang P., Zhang X., Li X., Yan X., Fu D., Wu G. The genetic and molecular basis of crop height based on a rice model. Planta. 2018, 247 (1), 1-26. https://doi.org/10.1007/s00425-017-2798-1 |
||||
35. Ashraf M., Karim F., Rasul E. Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. J. Plant Growth Regul. 2002, 36 (1), 49-59. https://doi.org/10.1023/A:1014780630479 |
||||
36. Irfan A., Shahzadm A. B., Amir I. The effects of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. J. Stress Physiol. Biochem. 2005, 1 (1), 6-14. | ||||
37. Magome H., Yamaguchi S., Hanada A., Kamiya Y., Oda K. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J. 2008, 56 (4), 613-626. https://doi.org/10.1111/j.1365-313X.2008.03627.x |
||||
38. Shu K., Qi Y., Chen F., Meng Y., Luo X., Shuai H., Zhou W., Ding J., Du J., Liu J., Yang F., Wang Q., Liu W., Yong T., Wang X., Feng Y., Yang W. Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Front. Plant Sci. 2017, 10 (8), 1372-1384. https://doi.org/10.3389/fpls.2017.01372 |
||||
39. Wu C., Tang S., Li G., Wang S., Fahad S., Ding Y. Roles of phytohormone changes in the grain yield of rice plants exposed to heat: a review. Peer J. 2019, V. 7, P. e7792. https://doi.org/10.7717/peerj.7792 |
||||
40. Yang D., Li Y., Shi Y., Cui Z., Luo Y., Zheng M., Chen J., Li Y., Yin Y., Wang Z. Exogenous Cytokinins Increase Grain Yield of Winter Wheat Cultivars by Improving Stay-Green Characteristics under Heat Stress. PLoS One. 2016, 11 (5), e0155437. https://doi.org/10.1371/journal.pone.0155437 |
||||
41. Toh S., Imamura A., Watanabe A., Nakabayashi K., Okamoto M., Jikumaru Y., Hanada A., Aso Y., Ishiyama K., Tamura N., Iuchi S., Kobayashi M., Yamaguchi S., Kamiya Y., Nambara E., Kawakami N. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 2008, 146 (3), 1368-1385. https://doi.org/10.1104/pp.107.113738 |
||||
42. Sakata T., Oda S., Tsunaga Y., Shomura H., Kawagishi-Kobayashi M., Aya K., Saeki K. Reduction of Gibberellin by Low Temperature Disrupts Pollen Development in Rice. Plant Physiol. 2014, 164 (4), 2011-2019. https://doi.org/10.1104/pp.113.234401 |
||||
43. Sharma K. D., Nayyar H. Regulatory Networks in Pollen Development under Cold Stress. Front. Plant Sci. 2016, V. 7, P. 402-416. https://doi.org/10.3389/fpls.2016.00402 |
||||
44. Tonkinson C. L., Lyndon R. F., Arnold G. M., The effects of temperature and the Rht3 dwarfing gene on growth, cell extension, and gibberellin content and responsiveness in the wheat leaf. J. Exp. Bot. 1997, 48 (4), 963-970. https://doi.org/10.1093/jxb/48.4.963 |
||||
45. Tanaka N., Matsuoka M., Kitano H., Asano T., Kaku H., Komatsu S. Gid1, a gibberellin-insensitive dwarf mutant, shows altered regulation of probenazole-inducible protein (PBZ1) in response to cold stress and pathogen attack. Plant Cell Environ. 2006, 29 (4), 619-631. https://doi.org/10.1111/j.1365-3040.2005.01441.x |
||||
46. Xu D., Cao H., Fang W., Pan J., Chen J., Zhang J., Shen W. Linking hydrogen-enhanced rice aluminum tolerance with the reestablishment of GA/ABA balance and miRNA-modulated gene expression: a case study on germination. Ecotoxicol. Environ. Saf. 2017, V. 145, P. 303-312. https://doi.org/10.1016/j.ecoenv.2017.07.055 |
||||
47. Kosakivska I. V., Voуtenko L. V., Vasуuk V. A., Shcherbatiuk M. M. Effect of zinc on growth and phytohormones accumulation in Triticum aestivum L. Seedlings priming with abscisic acid. Dopov. Nac. akad. nauk Ukr. 2019, N 11, P. 93-99. https://doi.org/10.15407/dopovidi2019.11.093 |
||||
48. Abhinandan K., Skori L., Stanic M., Hickerson N. M. N., Jamshed M., Samuel M. A. Abiotic Stress Signaling in Wheat - An Inclusive Overview of Hormonal Interactions During Abiotic Stress Responses in Wheat. Front. Plant Sci. 2018, V. 9, P. 734-742. https://doi.org/10.3389/fpls.2018.00734 |
||||
49. Verma V., Ravindran P., Kumar P. P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16 (1), 86. https://doi.org/10.1186/s12870-016-0771-y |
||||
50. Ye N., Zhang J. Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice. Plant Signal Behav. 2012, 7 (5), 563-565. https://doi.org/10.4161/psb.19919 |
||||
51. Kosakivska I. V., Voytenko L. V., Vasyuk V. A., Vedenichova N. P., Babenko L. M., Shcherbatyuk M. M. Phytohormonal regulation of seed germination. Fiziolohia rastenii i henetyka. 2019, 51 (3), 187-206. (In Ukrainian). https://doi.org/10.15407/frg2019.03.187 |
||||
52. Piskurewicz U., Jikumaru Y., Kinoshita N., Nambara E., Kamiya Y., Molin L-L. The Gibberellic Acid Signaling Repressor RGL2 Inhibits Arabidopsis Seed Germination by Stimulating Abscisic Acid Synthesis and ABI5 Activity. Plant Cell. 2008, V. 20, P. 2729-2745. https://doi.org/10.1105/tpc.108.061515 |
||||
53. Lim S., Park J., Lee N., Jeong J., Toh S., Watanabe A., Kim J., Kang H., Kim D. H., Kawakami N., Choi G. ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell. 2013, 25 (12), 4863-4878. https://doi.org/10.1105/tpc.113.118604 |
||||
54. G?mez-Cadenas A., Verhey S. D., Holappa L. D., Shen Q., Ho T. H., Walker-Simmons M. K. An abscisic acid induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Proc. Natl. Acad. Sci. USA. 1999, 96 (4), 1767-1772. https://doi.org/10.1073/pnas.96.4.1767 |
||||
55. Yamauchi D., Zentella R., Ho T. H. Molecular analysis of the barley (Hordeum vulgare L.) gene encoding the protein kinase PKABA1 capable of suppressing gibberellin action in aleurone layers. Planta. 2002, 215 (2), 319-326. https://doi.org/10.1007/s00425-002-0740-6 |
||||
56. He Y., Li W., Lv J., Jia Y., Wang M., Xia G. Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J. Exp. Bot. 2012, 63 (3), 1511-1522. https://doi.org/10.1093/jxb/err389 |
||||
57. Jacobsen J. V., Pearce D. W., Poole A. T., Pharis R. P., Mander L. N. Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiol. Plant. 2002, V. 115, P. 428-441. https://doi.org/10.1034/j.1399-3054.2002.1150313.x |
||||
58. White C. N., Proebsting W. M., Hedden P., Rivin C. J. Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol. 2000, V. 122, P. 1081-1088. https://doi.org/10.1104/pp.122.4.1081 |
||||
59. Bora R. K., Sarma C. M. Effect of gibberellic acid and cycocel on growth, yield and protein content of pea. Asian. J. Plant Sci. 2006, 5 (2), 324-330. https://doi.org/10.3923/ajps.2006.324.330 |
||||
60. Hu J., Israeli A., Ori N., Suna T. The Interaction between DELLA and ARF/IAA Mediates Crosstalk between Gibberellin and Auxin Signaling to Control Fruit Initiation in Tomato. The Plant Cell. 2018, V. 30, P. 1710-1728. https://doi.org/10.1105/tpc.18.00363 |
||||
61. Greenboim-Wainberg Y., Maymon I., Borochov R., Alvarez J., Olszewski N., Ori N., Eshed Yu., Weiss D. Cross Talk between Gibberellin and Cytokinin: The Arabidopsis GA Response Inhibitor SPINDLY Plays a Positive Role in Cytokinin Signaling. Plant Cell. 2005, 17 (1), 92-102. https://doi.org/10.1105/tpc.104.028472 |
||||
62. Zhou J., Li Z., Xiao G., Zhai M., Pan X., Huang R., Zhang H. CYP71D8L is a key regulator involved in growth and stress responses by mediating gibberellin homeostasis in rice. J. Exp. Bot. 2020, 71 (3), 1160-1170. https://doi.org/10.1093/jxb/erz491 |
||||
63. Yang J., Duan G., Li C., Liu L., Han G., Zhang Y., Wang C. The Crosstalks Between Jasmonic Acid and Other Plant Hormone Signaling Highlight the Involvement of Jasmonic Acid as a Core Component in Plant Response to Biotic and Abiotic Stresses. Front. Plant Sci. 2019, V. 10, P. 1349. https://doi.org/10.3389/fpls.2019.01349 |
||||
64. Rademacher W. Chemical regulators of gibberellin status and their application in plant production. Ann. Plant Rev. 2016, V. 49, P. 359-403. https://doi.org/10.1002/9781119210436.ch12 |
||||
65. Sarkar S., Michel R., Falk D., Zhang R. Relationship between gibberellins, height, and stress tolerance in barley (Hordeum vulgare L.) seedlings. J. Plant. Growth. Regul. 2004, 42 (2), 125-135. https://doi.org/10.1023/B:GROW.0000017492.56792.64 |
||||
66. Crook M. J., Ennos A. R. Stem and root characteristics associated with lodging resistance in 4 winter-wheat cultivars. J. Agric. Sci. 1994, V. 123, P. 167-174. https://doi.org/10.1017/S0021859600068428 |
||||
67. Pan S., Rasul F., Li W., Tian H., Mo Z., Duan M., Tang X. Roles of plant growth regulators on yield, grain qualities and antioxidant enzyme activities in super hybrid rice (Oryza sativa L.). Rice. 2013, V. 6, article number: 9. https://doi.org/10.1186/1939-8433-6-9 |
||||
68. Plaza-W?thrich S., Bl?sch R., Rindisbacher A., Cannarozzi G., Tadele Z. Gibberellin deficiency confers both lodging and drought tolerance in small cereals. Front. Plant Sci. 2016, V. 7, P. 1-14. https://doi.org/10.3389/fpls.2016.00643 |
||||
69. Kim S-K., Han C-M., Shin J-H., Kwon T-Y. Effects of paclobutrazol and prohexadione-Ca on seed yield, and content of oils and gibberellin in flax grown in a greenhouse. Korean J. Crop. Sci. 2018, 63 (3), 265-271. https://doi.org/10.7740/KJCS.2018.63.3.265 | ||||
70. Jabir B. M. O., Kinuthia K. B., Faroug M. А., Awad F. N., Everlyne M. М., Ahmadzai Z., Liu L. Effects of gibberellin and gibberellin biosynthesis inhibitor (paclobutrazol) applications on radish (Raphanus sativus L.) taproot expansion and the presence of authentic hormones. Int. J. Agric. Biol. 2017, 19 (4), 779-784. https://doi.org/10.17957/IJAB/15.0359 |
||||
71. Gebre E., Schl?ter U., Hedden P., Kunert K. Gibberellin biosynthesis inhibitors help control plant height for improving lodging resistance in Eragrostis tef. J. Crop. Improv. 2012, V. 26, P. 375-388. https://doi.org/10.1080/15427528.2011.646056 |
||||
72. Bakheta M. A., Hussein M. M. Uniconazole effect on endogenous hormones, proteins and proline contents of barley plants (Hordeum vulgare) under salinity stress (NaCl). Nusantara Biosci. 2014, 6 (1), 39-44. https://doi.org/10.13057/nusbiosci/n060107 |
||||
73. Ahmad I., Kamran M., Meng X., Ali S., Bilegjargal B., Cai T., Liu T., Han Q. Effects of plant growth regulators on seed filling, endogenous hormone contents and maize production in semiarid regions. J. Plant Growth Regul. 2019, V. 38, P. 1467-1480. https://doi.org/10.1007/s00344-019-09949-2 |
||||
74. Coelho Filho M. A., Colebrook E. H., Lloyd D. P. A., Webster C. P., Mooney S. J., Phillips A. L., Hedden P., Whalley W. R. The involvement of gibberellin signalling in the effect of soil resistance to root penetration on leaf elongation and tiller number in wheat. Plant Soil. 2013, V. 371, P. 81-94. https://doi.org/10.1007/s11104-013-1662-8 |
||||
75. Sarwar N., Atique-ur-Rehman, Farooq O., Mubeen N., Wasaya A., Nourman W., Zafar Ali M., Shehzad M. Exogenous application of gibberellic acid improves the maize crop productivity under scarce and sufficient soil moisture condition. Cercet. Agron. Mold. 2018, 50 (4), 65-73. https://doi.org/10.1515/cerce-2017-0036 |
||||
76. Ansari O., Azadi M. S., Sharif-Zadeh F., Younesi E. Effect of Hormone Priming on Germination Characteristics and Enzyme Activity of Mountain Rye (Secale montanum) Seeds under Drought Stress Conditions. J. Stress. Physiol. Biochem. 2013, 9 (3), 61-71. | ||||
77. Arabshahi M., Mobasser H. R., Rad M. R. N. Effect of drought stress and gibberellin on some characteristics of wheat. Chem. Res. J. 2017, 2 (2), 154-158. Available online www.chemrj.org | ||||
78. Kaya C., Tuna A. L., Alves A. Gibberellic acid improves water deficit tolerance in maize plants. Acta Phisiol. Plant. 2006, 28 (4), 331-337. https://doi.org/10.1007/s11738-006-0029-7 |
||||
79. Iqbal M., Ashraf M. Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ. Exp. Bot. 2013, V. 86, P. 76-85. https://doi.org/10.1016/j.envexpbot.2010.06.002 |
||||
80. Tuna A. L., Kaya C., Dikilitas M., Higgs D. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ. Exp. Bot. 2008, 62 (1), 1-9. https://doi.org/10.1016/j.envexpbot.2007.06.007 |
||||
81. Amal M. E. Abdel-Hamid, Heba I. M. The effect of the exogenous gibberellic acid on two salt stressed barley cultivars. Europ. Sci. J. 2014, 10 (6), 1857-1881. https://doi.org/10.19044/esj.2014.v10n6p%25p | ||||
82. Gangwar S., Singh V. P., Tripathi D. K., Chauhan D. K., Prasad S. M., Maurya J. N. Plant responses to metal stress: the emerging role of plant growth hormones in toxicity alleviation. In: Emerging technologies and management of crop stress tolerance. Academic Press. 2014, P. 215-248. https://doi.org/10.1016/B978-0-12-800875-1.00010-7 |
||||
83. Sytar O., Kumari P., Yadav S., Brestic M., Rastogi A. Phytohormone Priming: Regulator for Heavy Metal Stress in Plants. J. Plant. Growth Regul. 2019, V. 38, P. 739-752. https://doi.org/10.1007/s00344-018-9886-8 |
||||
84. Zhu X. F., Jiang T., Wang Z. W., Lei G. J., Shi Y. Z., Li G. X., Zheng S. J. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J. Hazard. Mater. 2012, V. 239-240, P. 302-307. https://doi.org/10.1016/j.jhazmat.2012.08.077 |
||||
85. Koprivova A., North K. A., Kopriva S. Complex Signaling Network in Regulation of Adenosine 5?-Phosphosulfate Reductase by Salt Stress in Arabidopsis Roots. Plant Physiol. 2008, V. 146, P. 1408-1420. https://doi.org/10.1104/pp.107.113175 |
||||
86. Siddiqui M. H., Al-Whaibi M. H., Basalah M. O. Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma. 2010, 248 (3), 503-511. https://doi.org/10.1007/s00709-010-0197-6 |
||||
87. Amri B., Khamassi K., Ali M. B., Teixeira da Silva J. A., Kaab L. B. B. Effects of gibberellic acid on the process of organic reserve mobilization in barley grains germinated in the presence of cadmium and molybdenum. South Afr. J. Bot. 2016, V. 106, P. 35-40. https://doi.org/10.1016/j.sajb.2016.05.007 |
||||
88. Shehata S. M., Badawy R. K., Aboulsoud Y. I. E. Phytoremediation of some heavy metals in containated soil. Bull. Natl. Res. Cent. 2019, V. 43, Article number 189. https://doi.org/10.1186/s42269-019-0214-7 |
||||
89. Picazo I., Moya J. L. Heavy metal hormone interactions in rice plants: effect on growth, photosynthesis and carbohydrate distribution. J. Plant Growth Regul. 1995, V. 14, P. 61-67. https://doi.org/10.1007/BF00203115 |
||||
90. Ulfat A., Majid S. A., Hameed A. Hormonal seed priming improves wheat (Triticum aestivum L.) field performance under drought and non-stress conditions Pak. J. Bot. 2017, V. 49, P. 1239-1253. https://www.researchgate.net/publication/319313045 | ||||
91. Ma H. Y., Zhao D., Ning, Q., Wei J., Li Y., Wang M., Liu X., Jiang C., Liang Z. A Multi-year Beneficial Effect of Seed Priming with Gibberellic Acid-3 (GA3) on Plant Growth and Production in a Perennial Grass, Leymus chinensis. Sci. Rep. 2018, V. 8, P. 13214. https://doi.org/10.1038/s41598-018-31471-w |
||||
92. Rogach V. V., Voytenko L. V., Shcherbatiuk M. M., Kosakivska I. V., Rogach T. I. Morphogenesis, pigment content, phytohormones and productivity of eggplants under the action of gibberellin and tebuconazole. Regul. Mech. Biosyst. 2020, 11 (1), 116-122. https://doi.org/10.15421/022017 |