ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 5, 2020
Р. 5-18, Bibliography 118, English
Universal Decimal Classification: 519.8.612.007
https://doi.org/10.15407/biotech13.05.005
MATHEMATICAL MODELLING OF IMMUNE PROCESSES AND ITS APPLICATION
N. I. Aralova1, O. M. Klyuchko2, V. I. Mashkin1, I. V. Mashkina1, T. A. Semchik1
1Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv
2National Aviation University, Kyiv, Ukraine
The aim of the study was to develop a mathematical model to research hypoxic states in case of simulation of an organism infectious lesions. The model is based on the methods of mathematical modeling and the theory of optimal control of moving objects. The processes of organism damage are simulated with the mathematical model of immune response developed by G.I. Marchuk and the members of his scientific school, adapted to current conditions. This model is based on Burnet’s clone selection theory of the determining role of antigen. Simulation results using the model are presented. The dependencies of infectious courses on the volumetric velocity of systemic blood flow is analyzed on the complex mathematical model of immune response, respiratory and blood circulation systems. The immune system is shown to be rather sensitive to the changes in blood flow via capillaries. Thus, the organ blood flows can be used as parameters for the model by which the respiratory, immune response, and blood circulation systems interact and interplay.
Key words: mathematical model of immune response, functional respiratory system, simulation of infectious disease course, integrated mathematical model, interaction of functional systems of organism.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Petrov R. V. Immunology. M.: Medicina, 1987, 416 р. (In Russian).
2. Royt A., Brostoff J., Mail D Rojt A., Brostoff Dzh., Mejl D. Immunology. M.: Mir. 2000, 592p. (In Russian).
3. Paul W. Immunology. T. I-III – M.: Mir. 1987– 1989. (In Russian).
4. A. M. Molchanov. Multi-barrier immunity. Biofizika. 1971, 16(3), 482–484. (In Russian).
5. Khanin M. A., Elkin L. I. Mathematical model of mycobacterial population. Moskva: Nauka. 1976, 153 p. (In Russian).
6. Marchuk G. I., Petrov R. V. Mathematical model of antiviral immune response. Preprint. OVM AN SSSR. Moskva. 1981, (10), 22 p. (In Russian).
7. Marchuk G. I., Petrov R. V. Viral organ damage and immunophysiological defense reactions (mathematical model). Preprint. OVM AN SSSR.. Moskva. 1983, (51), 12 p. (In Russian).
8. Marchuk G. I., Petrov R. V., Romanyukh A. A., Bocharov G. A. Mathematical model of antiviral immune response. I. Data analysis, generalized picture construction and parameters evaluation for Hepatitis B. J. Theor. Biol. 1991, 151 (1), 1–40. https://doi.org/10.1016/s0022-5193(05)80142-0
9. Marchuk G. I., Romanyukha A. A., Bocharov G. A. Mathematical model of antiviral immune response. II. Parameters identification for acute viral Hepatitis B. J. Theor. Biol. 1991, 151 (1), 41–70. https://doi.org/10.1016/s0022-5193(05)80143-2
10.. Grebennikov D. S., Donets D. O., Orlova O. G., Argilaguet J., Meyerhans A., Bocharov G. A. Mathematical Modeling of the Intracellular Regulation of Immune Processes. Mol. Biol. 2019, 53 (5), 718–731. https://doi.org/10.1134/s002-6898(41)905008-2 (In Russian).
11. Marchuk G. I. Mathematical models in immunology. Computational methods and experiments. Moskva: Nauka. 1991, 304 p. (In Russian).
12. Nowak M. A., May R. M., Virus dynamics. Mathematical principles of immunology and virology. Oxford: Oxford University Press. 2000, 237 p.
13. Anderson R. M., May R. M. Infectious human diseases. Dynamics and control. Moskva: Mir. 2004, 783 p. (In Russian).
14 .Hege J. S., Cole G. A mathematical model relating circulating antibody and antibody forming cells. J. Immunol. 1966, V. 97, P. 37–40.
15 .Cohen S. A model for the mechanism of antibody induction and tolerance, with specific attention to the affinity characteristics of antibodies produced during the immune response. J. Theor. Biol. 1970, V. 27, P. 19–29. https://doi.org/10.1016/S0022-5193(05)80142-0
16. Cohen S. A quantitative model for the mechanism of antibody formation and tolerance. Morphological and functional aspects of immunity. Adv. Exp. Med. Biol. V. 12. Ed. By K. Lindahl-Kaessliny, G. Alm, M. G. Hanna, Jr. New York: Plenum Press. 1971, P. 323–331. https://doi.org/10.1007/978-1-4615-9011-8_40
17. Bell G. Mathematical models of clonal selection and antibody production. J. Theor. Biol. 1970, V. 29, P. 191–232 https://doi.org/10.1016/0022-5193(70)90019-6
18. Bell G. Mathematical models of clonal selection and antibody production. II. J. Theor. Biol. 1971, V. 33, P. 339–378. https://doi.org/10.1016/0022-5193(71)90071-3
19. Bell G. Mathematical models of clonal selection. III. The cellular basis of immunological analysis J. Theor. Biol. 1971, V. 33, P. 378–398. https://doi.org/10.1016/0022-5193(71)90072-5
20. Bell G. Prey-predator equations simulating an immune response. Math. Biosci. 1973, V. 16, P. 291–314. https://doi.org/10.1016/0025-5564(73)90036-9
21. Pimbley G. Periodic solution of predator-prey equations simulating an immune response. I. Math. Biosci. 1974, V. 20. P. 27–51. https://doi.org/10.1016/0025-5564(74)90066-2
22. Pimbley G. Periodic solution of third order predator-prey equations simulating an immune response. Arc. Rat. Mech. Anal. 1975, V. 5, P. 43–120.
23. Pimbley G. Simple time-evolution equations simulating an immune response: their derivation, treatment and interpretation. Theor. Immunology. New York: Marcel Dekker. 1978, P. 465–497.
24. Smirnova O. A., Stepanova N. V. Electronic modeling of the dynamics of immune response. Vestnik MGU, Ser. Fizika, astronomiya. 1975, N 5, P. 500–526. (In Russian).
25. Smirnova O. A. Mathematical model of immunological reaction. MSU Bulletin, Ser. Fizika, astronomiya. 1975, N 4, P. 484–489. (In Russian).
26. Smirnova O. A., Stepanova N. V. Mathematical model of autoimmunity. Biofizika. 1975, 20 (6), 1095–1098. (In Russian).
27. Jilek M. The number of immunologic ally activated cells after repeated immunization (A mathematical model). Folia Microbiol. 1971, 16 (1), 12–23. https://doi.org/10.1007/BF02887330
28. Jilek M. On contact of immunocompetent cells with antigen (Note on probability model). Folia Microbiol. 1971, 16 (1), 83–87. https://doi.org/10.1007/BF02887475
29. J ilek M., Ursinova Z. The probability of a contact between immunocompetent cell and antigen. Folia Microbiol. 1970, V. 15, P. 294– 302. https://doi.org/10.1007/BF02869057
30. Mohler R., Barton C., Hsu C. System theoretic control in immunology. Proc. IFIP Symposium on Optimization. Nice. New York: Springer. 1976, P. 147–159.
31. Mohler R. Bilinear control structures in immunology. In modeling and optimization of complex system. Proc., IFIP TC-7 Working conference, Novosibirsk, USSR, 3–9 July 1978. Ed. By G. I. Marchuk. Berlin, Heidelberg, New York: Springer. 1979, P. 50–68.
32. Mohler R. T- and B-cell models in the immune system. Theoretical Immunology. Marcel: Dekker. 1978, P. 415–435.
33. Bruni C., Giovenco M., Koch G., Strom R. A dynamical model of humoral immune response. Math. Biosci. 1975, V. 27, P. 191–212. https://doi.org/10.1016/0025-5564(75)90103-0
34. Bruni C., Giovenco M., Koch G., Strom R. Modeling of the immune response: a system approach. Theoretical Immunology. 4. Marcel: Dekker. 1978, P. 379–414.
35. Pimbley G. H. Ir. Periodic solution of predator-prey equations simulating an immune response. II. Math. Biosci. 1974, V. 21, P. 251–277. https://doi.org/10.1016/0025-5564(74)90019-4
36. H su I. D., Kasarinoff H. D. Existence and stability of periodic solutions of a third-order nonlinear autonomous system simulating immune response in animals. I. Roy. Soc. Edinburgh. 1977, V. 77, P. 153–175. https://doi.org/10.1017/S0308210500018126
37. Marchuk G. I. The simplest mathematical model of viral disease. Preprint. Novosibirsk, VC SO AN SSSR. 1975. 22 p. (In Russian).
38. Belykh N. L., Marchyk G. I. Chronic form of disease and treatment according to mathematical immune response models. Proc. IFIP Working Conf. Complex System Modeling and Optimization. Novosibirsk. 1978. (In Russian)
39. Dibrov B. F., Livshits M. A., Volkenstein M. V. Mathematical model of immune response I. Biofizika. 1976, V. 21, P. 905–909. (In Russian).
40. Dibrov B. F., Livshits M. A., Volkenstein M. Mathematical models of immune processes. I. Theor. Biol. 1977, V. 65, P. 609–631. https://doi.org/10.1016/0022-5193(77)90012-1https://doi.org/10.1016/0022-5193(77)90012-1
41. Merrill S. I. A model of the stimulation of B cells by replicating antigen, II. Math. Biosci. 1978, V. 41, P. 143–155. https://doi.org/10.1016/0025-5564(78)90071-8
42. Dubin M. A. Stochastic model for immunological feedback in carcinogenesis: Analysis and approximations. New York: Springer. 1976. https://doi.org/10.1007/978-3-642-46338-9
43. Stepanova N. V., Chernavsky D. S. Mathematical model of immunosuppression caused by systemic action of the tumor on organism. Matematicheskoe modelirovanie v immunologii i medicine. Moskva: Mir. 1986, P. 81–89. (In Russian).
44. Dibrov B. F., Jabotinsky A. M., Gelfand E. V., Neifakh Y. A., Orlova M. P. Mathematical modeling of antitumor chemotherapy. Matematicheskoe modelirovanie v immunologii i medicine. Moskva: Mir. 1986, P. 97–103. (In Russian).
45. Marchuk G. I. Mathematical modeling in immunology and medicine. Selected works. Vol. 4. Russian Academy of Sciences, Institute of Computational Mathematics: Moskva. 2018, P. 650. (In Russian).
46. Bocharov G., Volpert V., Ludewig B., Meyerhans A. Mathematical Immunology of Virus Infections. Springer: Cham. 2018 (In Russian). https://doi.org/10.1007/978-3-319-72317-4
47. Asachenkov A. L. The simplest model of the influence of the temperature response on the dynamics of the immune response. Matematicheskoe modelirovanie v immunologii i medicine. Novosibirsk: Nauka. 1982, P. 40–43. (In Russian).
48. Asachenkov A. L., Marchuk G. I. Refined mathematical model of infectious disease. Matematicheskoe modelirovanie v immunologii i medicine. Novosibirsk: Nauka. 1982, P. 44–59. (In Russian).
49. Belukh N. L. Mathematical model of the attached disease. Matematicheskie modeli zabolevanij i metody obrabotki medicinskoj informacii. Novosibirsk: Nauka. 1979, P. 32–38. (In Russian).
50. Belukh N. L. Mathematical model of biinfection and the treatment of chronic forms of exacerbation. Matematicheskoe modelirovanie v immunologii i medicine. Novosibirsk: Nauka. 1982, P. 33–40. (In Russian).
51. Romanyukha A. A., Rudnev S. G. Mathematical modeling of immunoinflammatory processes in the lungs. The search of optimality. Computational Mathematics and Mathematical Modeling: Proceedings of an International Conference. Ed. V. P. Dumnikov. Мoskva: ICM RАS. 2000, P. 212–233. (In Russian).
52. Sannikova T. E., Romanyukha A. A., Bar-bi E., Caselli G., Franceschi C., Yashin A. I. Modeling of Immunosenescence and Risk of the Death from Respiratory Infections: Evaluation of the Role of Antigenic Load and Population Heterogeneity. Math. Model. Nat. Phenom. 2017, 12 (5), P. 1–13. https://doi.org/10.1051/mmnp/201712504
53. Romanyukha A. A. Mathematical models in immunology and epidemiology of infectious diseases. Moskva: Laboratoriya znanii. 2020, 296 p. . (In Russian)
54. Zheltkova V. V., Zheltkov D. A., Bocharov G. A., Tyrtyshnikov E. Application of the glоbal optimization methods for solving the parameter estimation problem in mathematical immunology. Lecture Notes in Computer Science. 2020, V. 11958, Р. 203–212. https://doi.org/10.1007/978-3-030-41032-2
55. Argilaguet J., Pedragosa M., Esteve-Codina A., Riera G., Vidal E., Peligero-Cruz C., Casella V., Andreu D., Kaisho T., Bocharov G., Ludewig B., Heath S. Systems analysis reveals complex biological processes during virus infection fate decisions. Genome Res. 2019. Special issue, 95-104. https://doi.org/10.1101/gr.241372.118
56. Bocharov G., Argilaguet J., Meyerhans A. Understanding experimental lcmv infection of mice: The role of mathematical models. J. Immunol. Res. 2015, V. 2015. https://doi.org/10.1155/2015/739706
57. Bocharov G., Kim A. V., Krasovskii A. N., Chereshnev V. A.,Glushenkova V., Ivanov A. An extremal shift method for control of HIV infection dynamics. Russian Journal of Numerical Analysis and Mathematical Modelling. 2015, 30 (1), 11–26, 40–43. https://doi.org/10.1515/rnam-2015-0002 ( In English)
58. Bocharov G., Meyerhans A., Bessonov N., Trofimchuk S., Volpert V. Spatiotemporal dynamics of virus infection spreading in tissues. PLoS ONE. 2016, 11 (12), e0168576.
59. Bocharov G., Meyerhans A., Bessonov N., Trofimchuk S., Volpert V. Modelling the dynamics of virus infection and immune response in space and time. Inter. J. Parallel, Emergent and Distributed Systems. 2017,34(4). 1–15. https://doi.org/10.1080/17445760.2017.1363203
60. Savynkova A. A., Savynkov P. C., Bahmetev B. A., Bocharov D. A. Mathematical Modeling and Management of dynamics of HIV — infection taking into account the hormonal regulation. Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Medicina.. 2019, 23 (1), 79–103. (In Russian).
61. Zheltkova V. V., Zheltkov D. A. Bocharov G. A. Modeling of HIV infection: models identification and investigation of global sensitivity. Matematicheskaya biologiya i bioinformatika. 2019, 14 (1), 19–33. https://doi.org/10.17537/2019.14.19 (In Russian).
62. Bocharov A. G., Kim A. V., Krasovskyy A. N., Hlushenkova V. V., Safronov M. A., Azmatieva V. V., Tretyakova R. M., Meyerhans A. Current problems of mathematical modeling and optimal management of the dynamics of HIV infection. Rossiskii immunologicheskii zhurnal. 2014, V. 8, P. 778–781. ID: 22813234. (In Russian).
63. Gainova I. A., Bazhan S. I., Lichoshvai V. A., Chereshnev V. A., Bocharov G. A. Possibilities of mathematical modeling in the study of HIV-1 infection. Rossiskii immunologicheskii zhurnal 2015, V. 9, P. 379–399. ID: 30060718 .(In Russian).
64. Bocharov G. A., Grebennikov D. S., Kislitsyn A. A., Savinkov R. S., Meyerhans A. Mathematical methods of integrative modeling of HIV infection. Rossiiskii immunologicheskii zhurnal .2014, V. 8, P. 782–785. ID: 22813235 (In Russian).
65. Sannikova T. E., Marchuk G. I., Romanyukha A. A., Yashin A. I. Aging of the immune system and the dynamics of mortality. Analysis of the role of antigenic load. Uspehi gerontologii. 2003, Is. 12, P. 91–98. (In Russian).
66. Romanyukha A. A., Yashin A. I. Mathematical model of age-related changes in the population of peripheral T-lymphocytes. Uspehi gerontologii. 2001,V. 8, P. 58–69. (In Russian).
67. Bocharov G., Volpert V., Ludewig B., Meyerhans A. Mathematical modeling of the immune system in homeostasis, infection and disease. Frontiers in immunol. 2020, 10 (2944), 1–3. https://doi.org/10.3389/fimmu.2019.02944
68. Trusov P. V., Zaitseva N. V., Chyhvyntsev V. M., Lanyn D. C. Regulation of immune antiviral response of organizm: mathematical model, qualitative analysis, results. Matem. biologiia i bioinform. 2018, 13 (2), 402–425. https://doi.org/10.17537/2018.13.402 (In Russian).
69. Ashley N. T., Demas G. E. Neuroendocrineimmune circuits, phenotypes, and interactions. Hormones and Behavior. 2017, V. 87, P. 25–34. https://doi.org/10.1016/j. yhbeh.2016.10.004
70. Bellavance M., Rivest S. The neuroendocrine control of the innate immune system in health and brain diseases. Immunol. Rev. 2012, 248 (1), 36–55. https://doi.org/10.1111/j.1600-065X.2012.01129.x
71. Suarez E. C., Sundy J. S., Erkanli A. Depressogenic vulnerability and genderspecific patterns of neuro-immune dysregulation: What the ratio of cortisol to C-reactive protein can tell us about loss of normal regulatory control. Brain, Behavior, and Immunity. 2015, N 44, P. 137–147. https://doi.org/10.1016/j.bbi.2014.09.008
72. Zaitseva N. V., Kiryanov D. A., Lanin D. V., Chigvintsev V. M. A mathematical model of the immune and neuroendocrine systems mutual regulation under the technogenic chemical factors impact. Computational and Mathematical Methods in Medicine. 2014. URL: https://doi.org/10.1155/2014/492489
73. Zaitseva N. V., Lanin D. V., Chereshnev V. A. Immune and neuroendocrine regulation under the influence of chemical factors of different genesis. Perm: Perm National Research Polytechnic University Publishing House. 2016, 236 p. (In Russian).
74. Chirkov M. V. Methods of controlling the immune response in conditions of uncertainty Ph.D. dissertation, Dept. Elect. Perm State University. 2017. (In Russian).
75. Chirkov M. V. Uncertainty management based on the mathematical model of anti-viral immune response. Scientific and Technical Bulletin of the Volga Region. 2017, N 4, P. 226–229. (In Russian). https://doi.org/10.17072/1993-0550-2019-4-67-71
76. Rusakov S. V., Chirkov M. V. Identification of parameters of the mathematical model of the influence of immunotherapy on the dynamics of immune response. Bulletin of Perm University. Mathematics. Mechanics. Informatics. 2014, 1 (24), 46–50. https://doi.org/10.17072/1993-0550-2019-4-67-71 (In Russian).
77. Rusakov S. V., Chirkov M. V. On some approaches to mathematical modeling of the immune response during the infectious diseases. Bulletin of Perm University. Mathematics.Mechanics.Informatics. 2015, 1 (28), 45–55. (In Russian).
78. Mai M., Wang K., Huber G., Kirby M., Shattuck M. D., O‘Hern C. S. Outcome Prediction in Mathematical Models of Immune Response to Infection. PLoS One. 2015, 10 (8), e0135861. https://doi.org/10.1371/journal.pone.0135861
79. Kuznetsov S. H. Mathematical model of the immune response. Dis. Cand. Phys.-Math. N 13/05/18 mathematical modeling and complexes of programs. S.-Pb. 2015, 101 p. (In Russian).
80. Kuznetsov S. Mathematical Model of the Humoral Immune Response: Focusing on Th17 Autoimmunity. Math. Biol. Bioinf. 2015, 10 (3), 455–472. https://doi.org/10.17537/2015.10.455
81. Kuznetsov S. R., Shishkin V. I. Mathematical modeling as a tool for theoretical research in immunology: advances and perspectives. Cytocines and inflammation. 2012, V. 11, P. 5–13. (In Russian).
82. Kuznetsov S. R., Shishkin V. I. A consolidated view of proliferation and differentiation of СD4+ T-lymphocytes: a mathematical model. Rossiiskii zhurnal immunologii. 2013, 7 (2–3), 176–177. (In Russian).
83. Quirouette C., Younis N. P., Reddy M. B., Beauchemin C. A. A. A mathematical model describing the localization and spread of influenza A virus infection within the human respiratory tract. PLoS Comput. Biol. 2020, 16 (4), e1007705. https://doi.org/10.1371/journal. pcbi.1007705
84. Weibel E. R. Morphometry of human lungs. M.: Medicina. 1970, 175 p. (In Russian).
85. Bocharov G., Volpert V., Ludewig B., Meyerhans A. Editorial: Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease. Frontiers in immunology. 2020, 10 (2944), 1–3. https://doi.org/10.3389/fimmu.2019.02944
86. Grebennikov D. S., Donets D. O., Orlova O. G., Argilaguet J., Meyerhans A., Bocharov G. A. Mathematical Modeling of the Intracellular Regulation of Immune Processes. Mol. Biol. 2019, 53 (5), 718–731. (In Russian). https://doi.org/10.1134/S002689331905008X
87. Grebennikov D. S., Bocharov G. A. Spatially resolved modelling of immune responses following a multiscale approach: from computational implementation to quantitative predictions. Russian J. Numerical Analysis and Mathematical Modelling. 2019, 34 (5), 253–260. https://doi.org/10.1515/rnam-2019-0021
88. Grebennikov D. S., Donets D. O., Orlova O. G., Argilaguet J., Meyerhans A., Bocharov G. A. Mathematical modeling of intracellular replication of immune processes. Mol. Boil. 2019, 53 (5), 815–829. https://doi.org/10.1134/S0026898419050082 (In Russian).
89. Nechepurenko Yu., Khristichenko M., Grebennikov D., Bocharov G. Bistability analysis of virus infection models with time delays. Discrete and Continuous Dynamical System. 2018. Series S. https://doi.org/10.3934/dcdss.2020166
90. Bouchnita A., Bocharov G., Meyerhans A., Volpert V. Hybrid approach to model the spatial regulation of T cell responses. BMC Immunol. 2017, 18 (29), 11–22. https://doi.org/10.1186/s12865-017-0205-0
91. Bocharov G., Meyerhans A., Bessonov N., Trofimchuk S., Volpert V. Modelling the dynamics of virus infection and immune response in space and time. Inter. J. Parallel, Emergent and Distributed Systems. 2017, Р. 1–15. https://doi.org/10.1080/17445760.2017.1363203
92. Bocharov G. A., Nechepurenko Yu. M., Khristichenko M. Yu., Grebennikov D. S. Management by the models of viral infections with delayed variables based on optimal perturbations. KIAM preprints named after M. V. Keldysh, IPM publishing house named after M. V. Keldysh RAS (Moscow). 2017, N 52, P. 1–28. https://doi.org/10.20948/prepr-2017-52 (In Russian).
93. Eftimie R., Gillard J. J., Cantrell D. A. Mathematical Models for Immunology: Current State of the Art and Future Research Directions. Bull. Math. Biol. 2016, 78 (10), 2091–2134. https://doi.org/10.1007/s11538-016-0214-9
94. Beauchemin C. A., Handel A. A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead. BMC Public Health. 2011, 1 (11 Suppl), S7. https://doi.org/bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-11-S1-S7
95. Sean Quan Du, Weiming Yuan. Mathematical modeling of interaction between innate and adaptive immune responses in COVID19 and implications for viral pathogenesis. https://doi.org/10.1002/jmv.25866
96. Chaolin Huang, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li Zhang, Guohui Fan, Jiuyang Xu, Xiaoying Gu, Zhenshun Cheng, Ting Yu, Jiaan Xia, Yuan Wei, Wenjuan Wu, Xuelei Xie, Wen Yin, HuiLi, Bin Cao. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020, 395 (10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
97. Dawei Wang, Bo Hu, Chang Hu, Fangfang Zhu, Xing Liu, Jing Zhang, Binbin Wang, Hui Xiang, Zhenshun Cheng, Yong Xiong, Yan Zhao, Yirong Li, Xinghuan Wang, Zhiyong Peng. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020, 323 (11), 1061–1069. https://doi.org/10.1001/jama.2020.1585
98. Nanshan Chen, Min Zhou, Xuan Dong, Jieming Qu, Fengyun Gong, Yang Han, Yang Qiu, Jingli Wang, Ying Liu, Yuan Wei, Jia & apos, An Xia, Ting Yu, Xinxin Zhang, Li Zhang. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020, 395 (10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
99. Fei Zhou, Ting Yu, Ronghui Du, Guohui Fan, Ying Liu, Zhibo Liu, Jie Xiang, Yeming Wang, Bin Song, Xiaoying Gu, Lulu Guan, Yuan Wei, Hui Li, Xudong Wu, Jiuyang Xu, Shengjin Tu, Yi Zhang, Hua Chen, Bin Cao. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020, 395 (10229), 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3
100. Semchyk T. A. Mathematical model of the hypoxia course process under infectious diseases, the ischemic heart deseases and their analysis. Theases for the obtaining the scientific degreeof Candidate of Technical Sciences on speciality 01. 05. 02 – mathematical modeling and computational methods.V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine. Kyiv. 2007, 20 p.
101. Onopchuk Yu. N. Homeostasis of functional respiratory system as a result of intersystem and system-medium informational interaction. Bioecomedicine. Uniform information space. Ed. by V. I. Gritsenko. Kyiv. 2001, P. 59–84. (In Russian).
102. Onopchuk Yu. N. Homeostasis of the functional circulatory system as a result of intersystem and system-medium informational interaction. Bioecomedicine. Uniform information space. Ed. By V. I. Gritsenko. Kyiv. 2001, P. 85–104. (In Russian).
103. Aralova N. I., Aralova А. А. Mathematical models of conflict controlled processes under functional self- organization of the respiratory system. Cyb. comp. eng. 2019, 3 (197), 65–79. https://doi.org/10.15407/kvt197.03.065
104. Onopchuck Y. N., Misyura A. G. Methods of mathematical modeling and management in theoretical investigations and solutions of applied tasks of sportive medicine and physiology. Cportivna medicina. 2008, N 1. (In Russian).
105. Semchyk T. A. The mathematical model of immune response on infectious damage to an organism and mechanisms of its interaction with models of respiration, blood circulation and heat exchange. Theory of optimal solution. 2018, V. 17, P. 92–98.
106. Galchyna N. I., Korniush I. I., Semchyk T. A. Mathematical models for complex assessment of the functional condition of the human body in extreme conditions. Theory of optimal solutions. 2019, V. 18, P. 13–18.
107. O nopchuck Y. N., Beloshitsky P. V., Aralova N. I. To problem of reliability of functional systems in organism. Cybernetics and computing technique. 1999, V. 122, P. 72–82. ISSN – 0454-9910. (In Russian).
108. Biloshitsky P. V., Onopchyk Yu. M., Marchenko D. I., Aralova N. I. Mathematic methods for investigation of reliability problem of organism functioning in extreme high mountain conditions Physiological J. 2003, 49 (3), 139–143. ISSN 2522-9028. (In Russian).
109. Aralova N. I. Mathematical model of the mechanism short- and medium-functional adaptation of breath of persons work in extreme conditions high. Kibernetika i vychislitelnaya tekhnika. 2015, V. 182, P. 15–25. https://doi.org/10.15407/kvt182.02.045
110. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V. Software for the reliability investigation of operator professional activity for “human-machine” systems. Electronics and control systems. 2017, V. 1, P. 107–115. https://doi.org/10.18372/1990-5548.51.11712
111. Liashko N. I., Onopchuck G. Yu. Pharmacological correction of organism state. Mathematical model and its analysis. Kompyuternaia matematika. Kyiv, CI NASU. 2005, N 1, P. 127–134. (In Russian).
112. Aralova N. I. Information technologies of decision making support for rehabilitation of sportsmen engaged in combat sport. J. Automation Information Sci. 2016, V. 3, P. 160–170. https://doi.org/10.1615/JAutomatInfScien.v48.i6.70
113. Aralova N. I., Klyuchko O. M., Mashkin V. I., Mashkina I. V., Semchyk T. A. Integrated mathematical model for imitation of the course of viral disease and correction of induced hypoxic stat. Biotechnol. acta. 2020, 13 (3), 30–39. https://doi.org/10.15407/biotech13.03.030
114. Aralova N. I. Integrated mathematical model of self-organization of functional systems of the organism for imitation viral diseases. J. Automation Information Sci. 2020, V. 3, P. 127–137. https://doi.org/10.1615/JAutomatInfScien.v52.i3
115. Aralova N. I., Shakhlina L. Ya.-G., Futornyi S. M. Mathematical model of the immune system of hight qualification athlete. J. Automation Information Sci. 2019, V. 2, P. 130–142. ISSN 0572-2691
116. Aralova N. I. Mathematical models of functional respiratory system for solving the applied problems in occupational medicine and sports. Saarbr?cken: LAP LAMBERT Academic Publishing GmbH&Co, KG. 2019, 368 p. (In Russian). ISBN 978-613-4-97998-6
117. Marchuk G. I., Pogozhev I. B., Zuev S. M. Similarity conditions in systems of interacting particles. Dokl. RAS. 1995, 345 (5), 605–606. (In Russian).
118. Belukh L. N. Analysis of some mathematical models in immunology. M.: Nauka. 1984, 147 p. (In Russian).