ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 2, 2020
Р. 32-37, Bibliography 22, English
Universal Decimal Classification: 577.113.3:681.785.58
https://doi.org/10.15407/biotech13.02.032
Krysiuk I. P., Horak I. R., Shandrenko S. G.
Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
It is known that nicotinamide adenine dinucleotide (NADH/NAD+) serves as a cofactor for many enzymes involved in the cell metabolism, redox control, signaling, biodegradation and other processes. Thereby determination of NADH/NAD+ production is commonly used for the measurement of NADH/NAD+-dependent enzymes activities. However, NADH may be oxidized spontaneously to NAD+ form, so the aim of this study was to develop new approach for spectrometric determination of real NADH content in a sample.
There had been used optical absorbance intensities at wavelengths 234, 260, 290, 340, and 400 nm in order to calculate the percent of NADH in a sample.
An original formula for the calculation of NADH percent in a sample was figure out, and the example of its application was presented.
The proposed calculation method could be applied for quick and routine NADH content determination at any laboratory equipped with spectrometer. Proposed method may be used for quick and routine determination of NADH content in any laboratory equipped with spectrometer.
Key words: NADH content determination, ultraviolet (UV) spectrometry.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Pollak N., D?lle C., Ziegler M. The power to reduce: pyridine nucleotides – small molecules with a multitude of functions. Biochem. J. 2007, 402 (2), 205–218. https://doi.org/10.1042/BJ20061638
2. Nikiforov A., Kulikova V., Ziegler M. The human NAD metabolome: Functions, metabolism and compartmentalization. Crit. Rev. Biochem. Mol. Biol. 2015, 50 (4), 284–297. https://doi.org/10.3109/10409238.2015.1028612
3. David L. Nelson, Michael M. Cox. Lehninger Principles of Biochemistry. New York: W. H. Freeman. 2005, 1198 p.
4. Berger F., Ramirez-Hernandez M. H., Ziegler M. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem. Sci. 2004, V. 29, P. 111–118. https://doi.org/10.1016/j.tibs.2004.01.007
5. Sell?s Vidal L., Kelly C. L., Mordaka P. M., Heap J. T. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866 (2), 327–347. https://doi.org/10.1016/j.bbapap.2017.11.005
6. Grolla A. A., Miggiano R., Di Marino D., Bianchi M., Gori A., Orsomando G., Gaudino F., Galli U., Del Grosso E., Mazzola F., Angeletti C., Guarneri M., Torretta S., Calabr? M., Boumya S., Fan X., Colombo G., Travelli C., Rocchio F., Aronica E., Wohlschlegel J. A., Deaglio S., Rizzi M., Genazzani A. A., Garavaglia S. A nicotinamide phosphoribosyltransferase-GAPDH interaction sustains the stress-induced NMN/NAD+ salvage pathway in the nucleus. J. Biol. Chem. 2020 [Epub ahead of print] pii: jbc.RA119.010571. https://doi.org/10.1074/jbc.RA119.010571
7. Cohen M. S. Interplay between compartmentalized NAD+ synthesis and consumption: a focus on the PARP family. Genes. Dev. 2020 [Epub ahead of print]. https://doi.org/10.1101/gad.335109.119
8. Lees J. G., Gardner D. K., Harvey A. J. Nicotinamide adenine dinucleotide induces a bivalent metabolism and maintains pluripotency in human embryonic stem cells. Stem. Cells. 2020 [Epub ahead of print]. https://doi.org/10.1002/stem.3152
9. Girotra M., Naveiras O., Vannini N. Targeting mitochondria to stimulate hematopoiesis. Aging (Albany NY). 2020, 12 (2), 1042–1043. https://doi.org/10.18632/aging.102807
10. Fjeld C. C., Birdsong W. T., Goodman R. H. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc. Natl. Acad. Sci. USA. 2003, 100 (16), 9202–9207. https://doi.org/10.1073/pnas.1633591100
11. Harlan B. A., Killoy K. M., Pehar M., Liu L., Auwerx J., Vargas M. R. Evaluation of the NAD+ biosynthetic pathway in ALS patients and effect of modulating NAD+ levels in hSOD1-linked ALS mouse models. Exp. Neurol. 2020, V. 327, P. 113219. https://doi.org/10.1016/j.expneurol.2020.113219
12. Cuny H., Rapadas M., Gereis J., Martin E., Kirk R. B., Shi H., Dunwoodie S. L. NAD deficiency due to environmental factors or gene-environment interactions causes congenital malformations and miscarriage in mice. Proc. Natl. Acad. Sci. USA. 2020, pii: 201916588. https://doi.org/10.1073/pnas.1916588117
13. Chiang S., Kalinowski D. S., Dharmasivam M., Braidy N., Richardson D. R., Huang M. L. The Potential of the Novel NAD+ Supplementing Agent, SNH6, as a Therapeutic Strategy for the Treatment of Friedreich's Ataxia. Pharmacol. Res. 2020, V. 4, P. 104680. https://doi.org/10.1016/j.phrs.2020.104680
14. Ye C., Qi L., Li X., Wang J., Yu J., Zhou B., Guo C., Chen J., Zheng S. Targeting the NAD+ salvage pathway suppresses APC mutation-driven colorectal cancer growth and Wnt/?-catenin signaling via increasing Axin level. Cell. Commun. Signal. 2020, 18 (1), 16. https://doi.org/10.1186/s12964-020-0513-5
15. Kang J. H., Lee S. H., Hong D., Lee J. S., Ahn H. S., Ahn J. H., Seong T. W., Lee C. H., Jang H., Hong K. M., Lee C., Lee J. H., Kim S. Y. Aldehyde dehydrogenase is used by cancer cells for energy metabolism. Exp. Mol. Med. 2016, 48 (11), e272. https://doi.org/10.1038/emm.2016.103
16. Sharma N., Okere I. C., Brunengraber D. Z., McElfresh T. A., King K. L., Sterk J. P., Huang H., Chandler M. P., Stanley W. C. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation. J. Physiol. 2005, 562 (Pt 2), 593–603. https://doi.org/10.1113/jphysiol.2004.075713
17. Fontaine J. X., Terc?-Laforgue T., Armengaud P., Cl?ment G., Renou J. P., Pelletier S., Catterou M., Azzopardi M., Gibon Y., Lea P. J., Hirel B., Dubois F. Characterization of a NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. Plant Cell. 2012, 24 (10), 4044–4065. https://doi.org/10.1105/tpc.112.103689
18. Irimia A., Madern D., Zacca? G., Vellieux F. M. Methanoarchaeal sulfolactate dehydrogenase: prototype of a new family of NADH-dependent enzymes. EMBO J. 2004, 23 (6), 1234–1244. https://doi.org/10.1038/sj.emboj.7600147
19. Hentall P. L., Flowers N., Bugg T. D. Enhanced acid stability of a reduced nicotinamide adenine dinucleotide (NADH) analogue. Chem. Commun. (Camb). 2001, V. 20, P. 2098–2099. https://doi.org/10.1039/b107634p
20. Fukazawa K., Ishihara K. Enhanced stability of NADH/dehydrogenase mixture system by water-soluble phospholipid polymers. Biomaterials and Biomechanics in Bioengineering. 2016, 3 (1), 37–46. https://doi.org/10.12989/bme.2016.3.1.037
21. Ince C., Coremans J. M. C. C., Bruining H. A. In Vivo NADH Fluorescence. In: Erdmann W., Bruley D. F. (eds). Oxygen Transport to Tissue XIV. 1992. Advances in Experimental Medicine and Biology, V. 317. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3428-0_30
22. Paul Held. Determination of NADH Concentrations with the Synergy™ 2 Multi-Detection Microplate Reader using Fluorescence or Absorbance. BioTek, Application Note. 2011.