ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta V. 13, No 2, 2020
Р. 48-55, Bibliography 24, English
Universal Decimal Classification: 579.222.7
https://doi.org/10.15407/biotech13.02.048
OPTIMIZATION OF THE CULTIVATION CONDITIONS OF THE RIBOFLAVIN STRAIN PRODUCER
Radchenko M. M., Andriiash H. S., Beiko N. Ye., Tigunova О. О., Shulga S. M.
SE “Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine”, Kyiv
The aim of the study was to establish the optimal cultivation conditions for increasing accumulation of riboflavin by the producer strain Bacillus subtilis. As an object of the study there were used strains of B. subtilis from “Collection of strains of microorganisms and plant lines for food and agricultural biotechnology” of the State Enterprise “Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine”. The percentage (10%) and the period of cultivation (16 hours) of the seed material necessary for accumulation of riboflavin were determined. The effect of the carbon source on the accumulation of riboflavin was studied and it was shown that the greatest accumulation (5.2 g/dm3) was with the use of glucose. The dynamics parameters of riboflavin accumulation over time were investigated and the optimal cultivation period was determined (68 hours). The optimal cultivation conditions were selected, which increased the accumulation of riboflavin in the culture fluid (glucose concentration — 120 g/dm3, temperature — 38 oC, and pH of the medium — 7.0) more than twice. It was concluded that the accumulation of riboflavin could be increased by changing the cultivation conditions.
Key words: strain producer, riboflavin, microbiological synthesis, Bacillus subtilis.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Gassmann B. Requirements of vitamin A, thiamine, riboflavine and niacin (FAO Food and Nutrition Series No. 8, FAO Nutrition Meetings Report Series No. 41, World Health Organization Technical Report Series No. 362). Food and Agriculture Organization of the United Nations, Food / Nahrung. 1979, 23 (6), 664–664. https://doi.org/10.1002/food.19790230628
2. Northrop-Clewes C. A., Thurnham D. I. The discovery and characterization of ribo?avin. Ann. Nutr. Metab. 2012, V. 61, P. 224–230. https://doi.org/10.1159/000343111
3. McCormick D. B. Vitamin/mineral supplements: of questionable benefit for the general population. Nutr. Rev. 2010, 68 (4), 207?213. https://doi.org/10.1111/j.1753-4887.2010.00279.x
4. Agte V. V., Paknikar K. M., Chiplonkar S. A. Effect of ribo?avin supplementation on zinc and iron absorption and growth performance in mice. Biol. Trace Elem. Res. 1998, 65 (2), 109–115. https://doi.org/10.1007/BF02784263
5. Mazur-Bialy A., Pochec? E., Plytycz B. Immunomodulatory e?ect of ribo?avin de?ciency and enrichment-reversible pathological response versus silencing of in?ammatory activation. Physiol. Pharmacol. 2015, 66 (6), 793–802.
6. Udhayabanu T., Karthi S., Mahesh A., Varalakshmi P., Manole A., Houlden H., Ashokkumar B. Adaptive regulation of ribo?avin transport in heart: E?ect of dietary ribo?avin de?ciency in cardiovascular pathogenesis. Mol. Cell. Biochem. 2018, 440 (1?2), 147–156. https://doi.org/10.1007/s11010-017-3163-1
7. Mensink G. B. M., Fletcher R., Gurinovic M., Huybrechts I., Lafay L., Serra-Majem L., Szponar L., Tetens I., Verkaik-Kloosterman J., Baka A., Stephen A. M. Mapping low intake of micronutrients across Europe. Br. J. Nutr. 2013, 110 (4), 755–773. https://doi.org/10.1017/S000711451200565X
8. Revuelta J. L., Ledesma-Amaro R., Lozano-Martinez P., D?az-Fern?ndez D., Buey R. M., Jim?nez A. Bioproduction of ribo?avin: A bright yellow history. J. Ind. Microbiol. Biotechnol. 2017, 44 (4?5), 659–665. https://doi.org/10.1007/s10295-016-1842-7
9. Vitorino L. C., Bessa L. A. Technological Microbiology: Development and Applications. Front Microbiol. 2017, 8 (827), 1?23. https://doi.org/10.3389/fmicb.2017.00827
10. Schwechheimer S. K., Park E. Y., Revuelta J. L., Becker J., Wittmann C. Biotechnology of riboflavin. Appl. Microbial. Biotechnol. 2016, 100 (5), 11?13. https://doi.org/10.1007/s00253-015-7256-z
11. Suwannasom N., Kao I., Pru? A., Georgieva R., B?umler H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int. J. Mol. Sci. 2020, 21 (950), 1?22. https://doi.org/10.3390/ijms21030950
12. Abbas C. A., Sibirny A. A. Genetic control of biosynthesis and transport of ribo?avin and ?avin nucleotides and construction of robust biotechnological producers. Microbiol. Mol. Biol. Rev. 2011, 75 (2), 321–360. https://doi.org/10.1128/MMBR.00030-10
13. Bretzel W., Schurter W., Ludwig B., Kupfer E., Doswald S., P?ster M., van Loon A. P. G. M. Commercial ribo?avin production by recombinant Bacillus subtilis: Down-stream processing and comparison of the composition of ribo?avin produced by fermentation or chemical synthesis. J. Ind. Microbiol. Biotechnol. 1999, V. 22, P. 19–26. https://doi.org/10.1038/sj.jim.2900604
14. Liu S., Hu W., Wang Z., Chen T. Production of riboflavin and related cofactors by biotechnological processes. Microb. Cell. Fact. 2020, 19 (31), 1?16.https://doi.org/10.1186/s12934-020-01302-7
15. Wang J., Wang W., Wang H., Yuan F., Xu Z., Yang K., Li Z., Chen Y., Fan K. Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic bacillus strains. Appl. Microbiol. Biotechnol. 2019, 103 (11), 4455?4465. https://doi.org/10.1007/s00253-019-09788-x
16. Gingichashvili S., Duanis-Assaf D., Shemesh M., Featherstone J. D. B., Feuerstein O., Steinberg D. The Adaptive Morphology of Bacillus subtilis Biofilms: A Defense Mechanism against Bacterial Starvation. Microorganisms. 2020, 8 (62), 1?13 https://doi.org/10.3390/microorganisms8010062
17. Ge Y.-Y., Zhang J.-R., Corke H., Gan R.-Y. Screening and Spontaneous Mutation of Pickle-Derived Lactobacillus plantarum with Overproduction of Riboflavin, Related Mechanism, and Food Application. Foods. 2020, 9 (88), 1?12. https://doi.org/10.3390/foods9010088
18. Bartzatt R., Wol T. Detection and assay of vitamin b-2 (riboflavin) in alkaline borate buffer with UV/visible spectrophotometry. Int. Sch. Res. Notices. 2014, V. 2, P. 1?7. https://doi.org/10.1155/2014/453085
19. Jamily A. S., Koyama Y., Win T. A., Toyota K., Chikamatsu S., Shirai T., Uesugi T., Murakami H., Ishida T., Yasuhara T. Effects of inoculation with a commercial microbial inoculant Bacillus subtilis C-3102 mixture on rice and barley growth and its possible mechanism in the plant growth stimulatory effect. J. Plant Prot. Res. 2019, 59 (2), 193?205. https://doi.org/10.24425/jppr.2019.129284
20. Yusupova Y. R., Skripnikova V. S., Kivero A. D., Zakataeva N. P. Expression and purification of the 5?-nucleotidase YitU from Bacillus species: its enzymatic properties and possible applications in biotechnology. Appl. Microbiol. Biotechnol. 2020, V. 104, P. 2957–2972. https://doi.org/10.1007/s00253-020-10428-y
21. Jang J. H., Kim S., Khaine I., Kwak M. J., Lee H. K., Lee T. Y., Lee W. Y., Woo S. Y. Physiological changes and growth promotion induced in poplar seedlings by the plant growth-promoting rhizobacteria Bacillus subtilis JS. Photosynthetica. 2018, V. 56, P. 1188–1203. https://doi.org/10.1007/s11099-018-0801-0
22. Oraei M., Razavi S. H., Khodaiyan F. Optimization of Effective Minerals on Riboflavin Production by Bacillus subtilis subsp. subtilis ATCC 6051 Using Statistical Designs. Avicenna J. Med. Biotechnol. 2018, 10 (1), 49?55.
23. Hu J., Lei P., Mohsin A,. Liu X., Huang M., Li L., Hu J., Hang H., Zhuang Y., Guo M. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production. Microb. Cel.l Fact. 2017, 16 (150), 1?16 https://doi.org/10.1186/s12934-017-0764-z