SSN 2410-776X (Online)
ISSN 2410-7751 (Print)
Biotechnologia Acta. V. 13, No 1, 2020
Р. 56-63, Bibliography 31, English
Universal Decimal Classification: 628.3
https://doi.org/10.15407/biotech13.01.056
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
The aim of the work is to determine the rational parameters of the malt plant wastewater treatment from ferric compounds in a flow-through experimental bioreactor with the use of duckweed. The main tasks of the study were as follows: to determine the effect of the initial concentration of the ferrum, the amount of biomass introduced and the duration of the purification process to reduce the content of ferric compounds in the wastewater.
The studies were carried out on existing sewage treatment plants. They used a semi-production unit incorporated into the technology before the decontamination step.
The results show that the logarithmic nature of the biological process was detected in the concentration range from 0.2 to 1.3 mg/dm3. Under these conditions, the rational values of the duration of the purification process is found to be 3-8 h with the Lemna minor biomass value not exceeding 12 g/dm3.
It has been first demonstrated that the effect of sewage treatment from ferric ions in the bioreactor with Lemna minor was up to 40% and depended on the initial concentration of the ferrum compounds in water at the existing wastewater treatment plants at a semi-production unit for biological treatment of wastewater from ferric compounds.
Key words: wastewater, biological treatment, iron, duckweed, fibrous carrier, malt plant.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020
References
1. Chong A., Celli J. The Francisella intracellular life cycle: toward molecular mechanisms of intracellular survival and proliferation. Front Microbiol. 2010, 1 (138), 1–12. https://doi.org/10.3389/fmicb.2010.00138
2. WHO Guidelines on Tularemia. WHO Press. 2007, 115 p.
3. Oyston P., Sjostedt A., Titball R. Tularemia: Bioterrorism Defence Renews Interest n Francisella Tularensis. Nature Rev. Microbiol. 2004, 2 (12), 967?979. https://doi.org/10.1038/nrmicro1045
4. Dahouk A. L., Nockler S. K., Tomaso H., Splettstoesser W., Jungersen G., Riber U., Petry T., Hoffmann D., Scholz H., Hensel A., Neubauer H. Seroprevalence of Brucellosis, Tularemia, and Yersiniosis in Wild Boars (Sus scrofa) from North-Eastern Germany. J. Vet. Med. 2005, 52 (10), 444?455. https://doi.org/10.1111/j.1439-0450.2005.00898.x
5. Hub?lek Z., Treml F., Juicov? Z., Huady M., Halouzka J., Jan?k V., Bill D. Serological survey of the wild boar (Sus scrofa) for tularaemia and brucellosis in South Moravia, Czech Republic. Vet. Med. 2002, 47 (2?3), 60?66. https://doi.org/10.17221/5805-VETMED
6. Geiger J. C. Tularemia in cattle and sheep. Cal. West. Med. 1931, 34 (3), 154?156. https://doi.org/10.1007/BF01627743
7. Stupnitskaya V. M., Marinov M. P., Litvinenko Ye. F., Slesarenko V. V., Slesarenko A. S.,. Khizhnskaya O. P., Stepanova I. A., Buyalo S. G. Natural tularemia foci on the territory of the Ukrainian SSR. J. Microbiol. Epidemiol. Immunobiol. 1965, N 10, P. 94?98
8. Hightower J., Kracalik I., Vydayko N., Goodin D., Glass G., Blackburn J. Historical distribution and host-vector diversity of Francisella tularensis, the causative agent of tularemia, in Ukraine. Parasites and Vectors. 2014, V. 7, P. 453?458. https://doi.org/10.1186/s13071-014-0453-2
9. Rusev I. T., Mogylevskii L. Ya., Boshenko Yu. A. Zakysilo V. N. Biocenotic features of natural foci of tularemia in the steppe zone of Ukraine. Visn. Sumy State Un-ty. 2005, 7 (79), 25?35. (In Russian).
10. Nakajima R., Escudero R., Molina D., Rodr?guez-Vargas M., Randall A., Jasinskas A., Pablo J., Felgner P., AuCoin D., Anda P., Davies D. Towards Development of Improved Serodiagnostics for Tularemia by Use of Francisella tularensis Proteome Microarrays. J Clin. Microbiol. 2016, 54 (7), 1755?1765. https://doi.org/10.1128/JCM.02784-15
11. Porsch-Ozc?r?mez M., Kischel N., Priebe H., Splettst?sser W., Finke E., Grunow R. Comparison of enzyme-linked immunosorbent assay, Western blotting, microagglutination, indirect immunofluorescence assay, and flow cytometry for serological diagnosis of tularemia. Clin. Diagn. Lab. Immunol. 2004, 11 (6), 1008?1015. https://doi.org/10.1128/CDLI.11.6.1008-1015.2004
12. Silva M. T. Classical Labeling of Bacterial Pathogens According to Their Lifestyle in the Host: Inconsistencies and Alternatives. Front Microbiol. 2012, 3 (71), 1–7.https://doi.org/10.3389/fmicb.2012.00071
13. Heizmann W., Botzenhart K., Doller G., Schanz D., Hermann G., Fleischmann K. Brucellosis : serological methods compared. J. Hyg. 1985, V. 95, P. 639–653. https://doi.org/10.1017/S0022172400060745
14. Moyer N. P., Evins G. M., Pigott N. E., Hudson J. D., Farshy C. E., Feeley J. C., Hausleret W. J. Comparison of serological screening tests for brucellosis. J. Clin. Microbiol. 1987, V. 25, P. 1969–1972. https://doi.org/10.1128/JCM.25.10.1969-1972.1987
15. Schmitt P., Splettst?sser W., Porsch-Ozc?r?mez M., Finke E. J., Grunow R. A novel screening ELISA and a confirmatory Western blot useful for diagnosis and epidemiological studies of tularemia. Epidemiol. Infect. 2005, 133 (4), 759?766. https://doi.org/10.1017/S0950268805003742
16. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 8th Edition. OIE. 2018, P. 675?682.
17. SI Sumy OLC MoH of Ukraine (Official web-page) Available at: http://ses.sumy.ua/informacya-dlya-naselennya/1027-epzootichna-situacya-z-tulyaremyi-v-oblast.html (accessed 25 December 2019).