ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
Biotechnologia Acta V. 12, No 6, 2019
Р. 12-24, Bibliography 30, English
Universal Decimal Classification: 579.663
https://doi.org/10.15407/biotech12.06.012
CANCER DIAGNOSTICS, IMAGING AND TREATMENT BY NANOSCALE STRUCTURES TARGETING
Öznur Özge ÖZCAN, Mesut KARAHAN
üsküdar University, Ïstanbul, TURKEY
Recent research focused on finding new strategies in cancer therapy that did not have significant side effects and was more effective than traditional modules including the surgical intervention, radiation and chemotherapeutics. In this regard the nanoscale structures provide useful approaches for cancer treatment. So, the nanoparticle systems improve the efficiency of therapeutic drugs reducing their side effects. Although many studies reported the development of novel cancer cell therapies for future, the clinical success is lacking understand the effects of nanoparticle type, size and dose with their usage areas. Thus, this review was aimed to illustrate the usage of nanoparticles in cancer diagnostic, imaging and treatment.
Key words: cancer diagnostic, imaging and treatment, nanoparticles.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2019
References
1. Stewart B. W., Kleihues P. World Cancer Report. World Health Organization Press. Avaible at https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2003 (accessed, Geneva, 2003).
2. Jemal A., Siegel R., Xu J., Ward E. Cancer statistics. Cancer J. Clin. 2010, V. 60, P. 277–300. https://doi.org/10.3322/caac.20073
3. Peer D., Karp J. M., Hong S. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, V. 2, P. 751–60. https://doi.org/10.1038/nnano.2007.387
4. Kumari P., Ghosh B., Biswas S. Nanocarriers for cancer-targeted drug delivery. J. Drug Targeting. 2015, 24 (3), 179–191. https://doi.org/10.3109/1061186X.2015.1051049
5. Kononenko V., Narat M., Drobne D. Nanoparticle interaction with the immune system / Interakcije nanodelcev z imunskim sistemom. Arch. Industr.l Hygiene Toxicol. 2015, 66 (2), 97–108. https://doi/org/10.1515/aiht-2015-66-2582
6. Baetke S. C., Lammers T., Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Brit. J. Radiol. 2015, 88 (1054), 20150207. https://doi.org/10.1259/bjr.20150207
7. Yih T, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J. Cel. Biochem. 2006, V. 97, P. 1184–1190. https://doi.org/10.1002/jcb.20796
8. Jabir N. R., Tabrez S., Ashraf G. M. et al. Nanotechnology-based approaches in anticancer research. Int. J. Nanomedicine. 2012, V. 7, P. 4391. https://doi.org/10.2147/IJN.S33838
9. Mallick A., More P., Ghosh S., Chippalkatti R., Chopade B. A., Lahiri M., Basu S. Dual Drug Conjugated Nanoparticle for Simultaneous Targeting of Mitochondria and Nucleus in Cancer Cells. ACS Applied Materials & Interfaces. 2015, 7 (14), 7584–7598. https://doi.org/10.1021/am5090226
10. Stammati A. P., Silano V., Zucco F. Toxicology investigations with cell culture systems. Toxicology. 1981, V. 20, P. 91–153. ttps://doi.org/10.1016/0300-483X(81)90046-9
11. Borm P., Klaessig F. C., Landry T. D., Moudgil B., Pauluhn J. et al. Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 2006, V. 90, P. 23–32. https://doi.org/10.1093/toxsci/kfj084
12. Costa E. C., Gaspar V. M., Marques J. G., Coutinho P., Correia I. J. Evaluation of Nanoparticle Uptake in Co-culture Cancer Models. PLoS ONE. 2013, 8 (7), e70072. https://doi.org/10.1371/journal.pone.0070072
13. Zhang X.-F., Liu Z.-G., Shen W., Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Inter. J. Mol. Sci. 2016, 17 (9), 1534. ttps://doi.org/10.3390/ijms17091534
14. AshaRani P. V, Mun G. L. K., Hande M. P., Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009, V. 3, P. 279–290.https://doi.org/10.1021/nn800596w
15. Foldbjerg R., Irving E. S., Hayashi Y., Sutherland D. S., Thorsen K., Autrup H., Beer C. Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol. Sci. 2012, V. 130, P. 145–157. https://doi.org/10.1093/toxsci/kfs225
16. Lin J., Huang Z., Wu H., Zhou W., Jin P., Wei P., Zhang Y., Zheng F., Zhang J., Xu J. et al. Inhibitio of ?autophagy enhances the anticancer activity of silver nanoparticles. Autophagy. 2014, V. 10, P. 2006–2020. https://doi.org/10.4161/auto.36293
17. Kov?cs D., Sz?ke K., Igaz N., Spengler G., Moln?r J., T?th T., Kiricsi M. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomed. Nanotechnol., Biol. Med. 2016, 12 (3), 601–610. https://doi.org/10.1016/j.envpol.2019.113880
18. Sokolov K., Follen M., Aaron J. et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003, 63 (9), 1999–2004. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773158
19. Kah J. C., Wong K. Y., Neoh K. G., Song J. H., Fu J. W., Mhaisalkar S. et al. Critical parameters in the pegylation of gold nanoshells for biomedical applications: An in vitro macrophage study. J. Drug Target. 2009, V. 17, P. 181–193. https://doi.org/10.1080/10611860802582442
20. Svarovsky S. A., Szekely Z., Barchi J. J. Synthesis of gold nanoparticles bearing the thomsen–friedenreich disaccharide: A new multivalent presentation of an important tumor antigen. Tetrahedron Asymmetry. 2005, V. 16, P. 587–598. https://doi.org/10.1016/j.tetasy.2004.12.003
21. Ojeda R., de Paz J. L., Barrientos A. G., Martin-Lomas M., Penades S. Preparation of multifunctional glyconanoparticles as a platform for potential carbohydrate-based anticancer vaccines. Carbohydrate Res. 2007, V. 342, P. 448–459. https://doi.org/10.1016/j.carres.2006.11.018
22. Mkandawire M. M., Lakatos M., Springer A., Clemens A., Appelhans D., Krause-Buchholz U., Mkandawire M. Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles. Nanoscale. 2015, 7 (24), 10634–10640. https://doi.org/10.1039/C5NR01483B
23. Lee C.-S., Kim H., Yu J., Yu S. H., Ban S., Oh S., Kim T. H. Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: A promising in vivo drug delivery system for colorectal cancer therapy. Europ. J. Med. Chem. 2017, V. 142, P. 416–423. https://doi.org/10.1016/j.ejmech.2017.08.063
24. Chang Y., Yan W., He X., Zhang L., Li C., Huang H. et al. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterol. 2012, V. 143, P. 177–187 e8. https://doi.org/10.1053/j.gastro.2012.04.009
25. Dawidczyk C. M., Russell L. M., Searson P. C. Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments. Frontiers in Chemistry. 2014, V. 2. https://doi.org/10.3389/fchem.2014.00069
26. Devulapally R., Sekar N. M., Sekar T. V., Foygel K., Massoud T. F., Willmann J. K., Paulmurugan R. Polymer Nanoparticles Mediated Codelivery of AntimiR-10b and AntimiR-21 for Achieving Triple Negative Breast Cancer Therapy. ACS Nano. 2015, 9 (3), 2290–2302. https://doi.org/10.1021/nn507465d
27. Fernandez-Fernandez A., Manchanda R., McGoron A. J. Theranostic Applications of Nanomaterials in Cancer: Drug Delivery, Image-Guided Therapy, and Multifunctional Platforms. Appl. Biochem. Biotechnol. 2011, V. 165, P. 1628–1651. https://doi.org/10.1007/s12010-011-9383-z
28. Lu J. M., Wang X., Marin-Muller C., Wang H., Lin P. H., Yao Q., Chen C. Current Advances in Research and Clinical Applications of PLGA-Based Nanotechnology. Expert Rev. Mol. Diagn. 2009, V. 9, P. 325–341. https://doi.org/10.1586/erm.09.15
29. Mundargi R. C., Babu V. R., Rangaswamy V., Patel P., Aminabhavi T. M. Nano/Micro Technologies for Delivering Macromolecular Therapeutics Using Poly(D,LLactide-Co-Glycolide) and Its Derivatives. J. Control. Release. 2008, V. 125, P. 193–209. https://doi.org/10.1016/j.jconrel.2007.09.013
30. Mattos-Arruda L., Giulia Bottai, Paolo G. Nuciforo, Luca Di Tommaso, Elisa Giovannetti, Vicente Peg, Agnese Losurdo, Jos? P?rez-Garcia, Giovanna Masci, Fabio Corsi, Javier Cort?s, Joan Seoane, George A. Calin, Libero Santarpia. MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget. 2015, V. 6, P. 37269–37280. https://doi.org/10.18632/oncotarget.5495
31. Malhotra M., Thillai Veerapazham Sekar, Jeyarama S. Ananta, Rammohan Devulapally, Rayhaneh Afjei, Husam A. Babikir, Ramasamy Paulmurugan, Tarik F. Massoud. Targeted nanoparticle delivery of therapeutic antisense microRNAs presensitizes glioblastoma cells to lower effective doses of temozolomide in vitro and in a mouse model. Oncotarget. 2018, V. 9, P. 21478–21494. https://doi.org/10.18632/oncotarget.25135
32. Mohammadian F., Pilehvar-Soltanahmadi Y., Mofarrah M., Dastani-Habashi M., Zarghami N. Down regulation of miR-18a, miR-21 and miR-221 genes in gastric cancer cell line by chrysin-loaded PLGA-PEG nanoparticles. Artif. Cel., Nanomed., Biotechnol. 2016, 44 (8), 1972–1978. https://doi.org/10.3109/21691401.2015.1129615
33. M?ller V., Gade S., Steinbach B., Loibl S., von Minckwitz G., Untch M., Schwarzenbach H. Changes in serum levels of miR-21, miR-210, and miR-373 in HER2-positive breast cancer patients undergoing neoadjuvant therapy: a translational research project within the Geparquinto trial. Breast Cancer Research and Treatment. 2014, 147 (1), 61–68. https://doi.org/10.1007/s10549-014-3079-3
34. Harris J. M., Chess R. B. Effect of Pegylation on Pharmaceuticals. Nat. Rev. Drug Discov. 2003, V. 2, P. 214–221. https://doi.org/10.1038/nrd1033
35. Mintzer M. A. Simanek E. E. Non Viral Vectors for Gene Delivery. Chem. Rev. 2009, V. 109, P. 259?302. https://doi.org/10.4103/2277-9175.98152
36. Yin H., Kanasty R. L., Eltoukhy A. A., Vegas A. J., Dorkin J. R., Anderson D. G. Non Viral Vectors for Gene-based Therapy Nat. Rev. Genet. 2014, V. 15, P. 541?555. https://doi.org/10.1038/nrg3763
37. Pietersz G. A., Tang C. K., Apostolopoulos V. Mini Rev. Med. Chem. 2006, V. 6, P. 1285?1298. https://doi.org/10.2174/138955706778992987
38. Hu Q., Wu M., Fang C., Cheng C., Zhao M., Fang W., Tang G. Engineering Nanoparticle-Coated Bacteria as Oral DNA Vaccines for Cancer Immunotherapy. Nano Letters. 2015, 15 (4), 2732–2739.https://doi.org/10.1021/acs.nanolett.5b00570
39. Schleich N., Sibret P., Danhier P., Ucakar B., Laurent S., Muller R. N., Danhier F. Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapyand magnetic resonance imaging. Inter. J. Pharmac. 2013, 447 (1–2), 94–101. https://doi.org/10.1016/j.ijpharm.2013.02.042
40. Zuo H. D., Yao W. W., Chen T. W., Zhu J., Zhang J. J., Pu Y., Zhang X. M. The Effect of Superparamagnetic Iron Oxide with iRGD Peptide on the Labeling of Pancreatic Cancer CellsIn Vitro: A Preliminary Study. BioMed Res. Inter. 2014, P. 1–8. https://doi.org/10.1155/2014/852352
41. Huh Y. M., Jun Y. W., Song H. T., Kim S., Choi J. S., Lee J. H. et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 2005, 127 (35), 12387–12391. https://doi.org/10.1021/ja052337c
42. Oghabian M. A., Jeddi-Tehrani M., Zolfaghari A., Shamsipour F., Khoei S., Amanpour S. Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI. J. Nanosci. Nanotechnol. 2011, 11 (6), 5340–5344. https://doi.org/10.1166/jnn.2011.3775
43. Marchesan S., Kostarelos K., Bianco A., Prato M. The winding road for carbon nanotubes in nanomedicine. Mater. Today. 2015, V. 18, P. 12–19. https://doi.org/10.1016/j.mattod.2014.07.009
44. Lacerda L., Bianco A., Prato M., Kostarelos K. Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug Deliv. Rev. 2006, V. 58, P. 1460–1470. https://doi.org/10.1016/j.addr.2006.09.015
45. Siu K. S., Chen D., Zheng X., Zhang X., Johnston N., Liu Y., Yuan K., Koropatnick J., Gillies E. R., Min W. P. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials. 2014, V. 35, P. 3435–3442. https://doi.org/10.1016/j.biomaterials.2013.12.079
46. Sanginario A., Miccoli B., Demarchi D. Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. Biosensors. 2017, 7 (4), 9. https://doi.org/10.3390/bios7010009
47. Zununi Vahed S., Salehi R., Davaran S., Sharifi S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Engin.: C. 2017, V. 71, P. 1327–1341. https://doi.org/10.1016/j.msec.2016.11.073
48. Eloy J. O., Petrilli R., Topan J. F., Antonio H. M., Barcellos J. P., Chesca D. L., Serafini L. N., Tiezzi D. G., Lee R. J., Marchetti J. M. Co-loaded paclitaxel/rapamycin liposomes: development, characterization and in vitro and in vivo evaluation for breast cancer therapy, Colloids Surf. B. Biointerfaces. 2016, V. 141, P. 74–82. https://doi.org/10.1016/j.colsurfb.2016.01.032
49. Elnakat H., Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv. Drug Deliv. Rev. 2004, V. 56, P. 1067–1084. https://doi.org/10.1016/j.addr.2004.01.001
50. Chaudhury A., Das S. Folate receptor targeted liposomes encapsulating anti-cancer drugs, Curr. Pharm. Biotechnol. 2015, V. 16, P. 333–343. https://doi.org/10.2174/1389201016666150118135107
51. Wu D., Zheng Y., Hu X., Fan Z., Jing X. Anti-tumor activity of folate targeted biodegradable polymer-paclitaxel conjugate micelles on EMT-6 breast cancer model. Mater. Sci. Eng. C. 2015, V. 53, P. 68–75. https://doi.org/10.1016/j.msec.2015.04.012
52. Yang T., Li B., Qi S., Liu Y., Gai Y., Ye P., Yang G., Zhang W., Zhang P., He X., Li W., Zhang Z., Xiang G., Xu C. Co-delivery of doxorubicin and Bmi1 siRNA by folate receptor targeted liposomes exhibits enhanced anti-tumor effects in vitro and in vivo. Theranostics. 2014, V. 4, P. 1096–1111. https://doi.org/10.7150/thno.9423
53. Peng Z., Wang C., Fang E., Lu X., Wang G., Tong Q. Co-delivery of doxorubicin and SATB1 shRNA by thermosensitive magnetic cationic liposomes for gastric cancer therapy. PLoS One. 2014, V. 9, P. e92924. https://doi.org/10.1371/journal.pone.0092924
54. Connelly C. M., Uprety R., Hemphill J., Deiters A. Spatiotemporal control of microRNA function using light-activated antagomirs, Mol. BioSyst. 2012, V. 8, P. 2987–2993. https://doi.org/10.1039/c2mb25175b
55. Riaz M., Riaz M., Zhang X., Lin C., Wong K., Chen X. Yang Z. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review. Inter. J. Mol. Sci. 2018, 19 (1), 195. https://doi.org/10.3390/ijms19010195
56. Biswas S., Kumari P., Lakhani P. M., Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Europ. J. Pharmac. Sc. 2016, V. 83, P. 184–202. https://doi.org/10.1016/j.ejps.2015.12.031
57. Lohcharoenkal W., Wang L., Chen Y. C., Rojanasakul Y. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy. BioMed Res. Inter. 2014, P. 1–12. https://doi.org/10.1155/2014/180549
58. Weber C., Coester C., Kreuter J., Langer. K. Desolvation process and surface characterisation of protein nanoparticles. Inter. J. Pharmac. 2000, 194 (1), 91–102. https://doi.org/10.1016/S0378-5173(99)00370-1
59. Teng Z., Luo Y., Wang T., Zhang B., Wang Q. Development and application of nanoparticles synthesized with folic acid conjugated soy protein. J. Agricult. Food Chemy. 2013, V. 61, P. 2556–2564. https://doi.org/10.1021/jf4001567
60. Gulfam M., Kim J., Lee J. M., Ku B., Chung B. H., Chung B. G. Anticancer drug-loaded gliadin nanoparticles induced apoptosis in breast cancer cells. Langmuir. 2012, V. 28, P. 8216– 8223. hhttps://doi.org/10.1021/la300691n
61. Elzoghby A. O., Saad N. I., Helmy M. W., Samy W. M., Elgindy N. A. Ionically-crosslinked milk protein nanoparticles as flutamide carriers for effective anticancer activity in prostate cancer-bearing rats. Europ. J. Pharmac. Biopharmac. 2013, 85 (3), part A, 444–451. https://doi.org/10.1016/j.ejpb.2013.07.003
62. Bazak R., Houri M., El Achy S., Kamel S., Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J. Cancer Res. Clin. Oncol. 2014, 141 (5), 769–784. https://doi.org/10.1007/s00432-014-1767-3
63. Eigenbrot C., Ultsch M., Dubnovitsky A., Abrahmsen L., Hard T. Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc. Nat. Acad. Sci.USA. 2010, 107 (34), 15039–15044. https://doi.org/10.1073/pnas.1005025107
64. Zhang J. M., Zhao X. M., Wang S. J., Ren X. C., Wang N., Han J.-Y., Jia L. Z. Evaluation of 99mTc peptide ZHER2: 342Affibody®molecule forin vivomolecular imaging. The Brit. J. Radiol. 2014, 87 (1033), 20130484.https://doi.org/10.1259/bjr.20130484
65. Ghanemi M., Pourshohod A., Ghaffari M. A., Kheirollah A., Amin M., Zeinali M., Jamalan M. Specific Targeting of HER2-Positive Head and Neck Squamous Cell Carcinoma Line HN5 by Idarubicin ZHER2 Affibody Conjugate. Curr. Cancer Drug Targets. 2019, 19 (1), 65–73. https://doi.org/10.2174/1568009617666170427105417
66. Glazer E. S., Massey K. L., Zhu C., Curley S. A. Pancreatic carcinoma cells are susceptible to noninvasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery. 2010, 148 (2), 319–324. https://doi.org/10.1016/j.surg.2010.04.025
67. Talekar M., Kendall J., Denny W., Garg S. Targeting of nano- particles in cancer: drug delivery and diagnostics. Anticancer Drugs. 2011, 22 (10), 949–962. https://doi.org/10.1097/CAD.0b013e32834a4554
68. Wang Z., Gu F., Zhang L., Chan J. M., Radovic-Moreno A., Shaikh M. R. et al. Biofunctionalized targeted nanoparticles for thera- peutic applications. Expert Opin. Biol. Ther. 2008, 8 (8), 1063–1070. https://doi.org/10.1517/14712598.8.8.1063
69. Lebel M.-?., Chartrand K., Tarrab E., Savard P., Leclerc D., Lamarre A. Potentiating Cancer Immunotherapy Using Papaya Mosaic Virus-Derived Nanoparticles. Nano Letters. 2016, 16 (3), 1826–1832. https://doi.org/10.1021/acs.nanolett.5b04877
70. Jinu U., Gomathi M., Saiqa I., Geetha N., Benelli G., Venkatachalam P. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microbial Pathogenesis. 2017, V. 105, P. 86–95. https://doi.org/10.1016/j.micpath.2017.02.019
71. Joshi M. D., Patravale V., Prabhu R. Polymeric nanoparticles for targeted treatment in oncology: current insights. Inter. J. Nanomed. 2015, P. 1001. https://doi.org/10.2147/IJN.S56932
72. Torchilin V. Tumor delivery of macromolecular drugs based on EPR effect. Adv. Drug Delivery Rev. 2011, V. 63, P. 131–135. https://doi.org/10.1016/j.addr.2010.03.011
73. Greish K. In Cancer Nanotechnology: Methods and Protocols. Ed. R. S. Grobmyer and M. B. Moudgil. Humana Press, Totowa, NJ. 2010, 25–37.
74. Maeda H. Nakamura, Fang J. The EPR effect for macromolecular delivery to solid tumors: improvement of tumor uptake lowering of systemic toxicity and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, V. 65, P. 71–79. https://doi.org/10.1016/j.addr.2012.10.002
75. Sun C., Lee J. S., Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 2008, V. 60, P. 1252–1265. https://doi.org/10.1016/j.addr.2008.03.018
76. Aires A., Ocampo S. M., Simoes B. M. et al. Multifunctionalized iron ?oxide nanoparticles for selective drug delivery to CD44-positive ?cancer cells. Nanotechnol. 2016, V. 27, P. 065103. https://doi.org/10.1088/0957-4484/27/6/065103
77. Marciello M., Pellico J., Fernandez-Barahona I., Herranz F., Ruiz-Cabello J., Filice M. Recent advances in the preparation and application of multifunctional iron oxide and liposome-based nanosystems for multimodal diagnosis and therapy. Interface Focus. 2016, 6 (6), 20160055. https://doi.org/10.1098/rsfs.2016.0055
78. Guo J., Rahme K., He Y., Li L.-L., Holmes J., O’Driscoll C. Gold nanoparticles enlighten the future of cancer theranostics. Inter. J. Nanomed. 2017, V. 12, P. 6131–6152. https://doi.org/10.2147/IJN.S140772
79. Jin Y. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release. Acc. Chem. Res. 2014, 47 (1), 138–148. https://doi.org/10.1021/ar400086e
80. Zhao Y., Pang B., Luehmann H. et al. Gold nanoparticles doped with (199) Au atoms and their use for targeted cancer imaging by SPECT. Adv. Healthc. Mater. 2016, 5 (8), 928–935. https://doi.org/10.1002/adhm.201500992
81. Liu J., Zhang L., Lei J., Ju H. MicroRNA-Responsive Cancer Cell Imaging and Therapy with Functionalized Gold Nanoprobe. ACS Appl. Mater. Interfaces. 2015, 7 (34), 19016–19023. https://doi.org/10.1021/acsami.5b06206
82. Li K., Nejadnik H., Daldrup-Link H. E. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discov. Today. 2017, 22 (9), 1421–1429. https://doi.org/10.1016/j.drudis.2017.04.008
83. Daldrup-Link H. E. et al. Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors. JCI Insight. 2016, V. 1, P. e85608. https://doi.org/10.1172/jci.insight.85608
84. Zaimy M. A., Saffarzadeh N., Mohammadi A., Pourghadamyari H., Izadi P., Sarli A., Tavakkoly-Bazzaz J. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 2017, 24 (6), 233–243. https://doi.org/10.1038/cgt.2017.16