ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No. 5, 2019
P. 85-95, Bibliography. 25, English
Universal Decimal Classification: 635.076:57.043
https://doi.org/10.15407/biotech12.05.089
MATHEMATICAL MODEL FOR DESCRIBING THE POST-CRYOPRESERVATION VIABILITY OF FRUIT AND BERRY CUTTINGS
L. V. Gorbunov1, I. V. Petrov2, O. V. Zviahintseva1
1 Chair of Biotechnology, Biophysics and Analytical Chemistry, National Technical University "Kharkiv Polytechnical Institute", Ukraine
2 Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
A mathematical model that simplifies the determination of optimal parameters ensuring the maximum viability of frozen-thawed fruit and berry cuttings was developed. Values of the minimum amount of intracellular water η1min, which minimizes the plasmolysis probability, and η2min, which minimizes the probability of intracellular ice formation, were determined with due account for the bioobject heterogeneity.
Free water amounts Δη, forming ice crystals inside the cell during cryopreservation of different of fruit and berry varieties, were calculated. The optimal conditions for cutting dehydration (temperature Ti and incubation time t2, minimum amount of intracellular water ηmin) ensuring the maximum viability after drying and low-temperature adaptation to cryopreservation were selected. The individual features of the viability of frozen-thawed cuttings of different species were quantitatively reflected in the free water index Δη. The maximum viability of frozen-thawed birch and blackcurrant cuttings was achieved, when intracellular water was in the bound, vitrified state Δη = 0. The calculated Δη>0 for cuttings of different varieties of apple- and pear-trees as well as of raspberry-bushes leads to a decrease in the viability, and it is impossible to obtain viable plum, apricot or grape specimens after low-temperature cryopreservation with no bound water ηс at all.
Key words: mathematical model, cryopreservation, fruit and berry cuttings, viability.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Popov A. S., Popova E. V., Nikishina T. V., Vysotskays O. N. Cryobank of plant genetic resources in Russian Academy of Sciences. Int. J. Refriger. 2006, 29 (3), 403?410. https://doi.org/10.1016/j.ijrefrig.2005.07.011
2. Maleckij S. I., Melent'eva S. A., Tatur I. S., Judanova S. S., Maleckaja E. I. Hybrid power conservation in apozygotic progeny of sugar beet (Beta vulgaris L.). Scientific support for the beet industry: Proceedings of the International scientific-practical conference dedicated to the 85th anniversary of RUE "Experimental scientific station for sugar beets": Nesvizh. 2013. (In Russian).
3. Novikova T. I. Use of biotechnological approaches for the conservation of plant biodiversity. Rastitel'nyi mir Aziatskoi Rossii. 2013, 2 (12), 119–128. (In Russian).
4. Sakai A., Nishiyama J. Cryopreservation of winter vegetative buds of hardy fruit trees in liquid nitrogen. Hort. Sci. 1978, 13 (1), 225. https://doi.org/10.2503/jjshs.47.27
5. Engelmann F. Cryopreservation of embryos: an overview. Meth. Mol. Biol. 2011, V. 710, P. 155?184. https://doi.org/10.1007/978-1-61737-988-8_13
6. Teixeira da Silva J. A., Engelmann F. Cryopreservation of oil palm (Elaeis guineensis Jacq.). Cryobiology. 2017, V. 77, P. 82?88. https://doi.org/10.1016/j.cryobiol.2017.04.007
7. Nair D. S., Reghunath B. R., Soni K. B., Alex S. Cryopreservation of Encapsulated Axillary Buds of Clitoria ternatea (L.). Cryo Lett. 2019, 40 (1), 28?35.
8. Hao Y. J., Liu Q. L., Deng X. X. Effect of cryopreservation on apple genetic resources at morphological, chromosomal, and molecular levels. Cryobiology. 2001, 43 (1), 46?53. https://doi.org/10.1006/cryo.2001.2339
9. Wu Y., Zhao Y., Engelmann F., Zhou M., Zhang D., Chen S. Cryopreservation of apple dormant buds and shoot tips. Cryo Lett. 2001, 22 (6), 375?380.
10. Shevchenko N. О., Ivchenko T. V., Mozgovska A. V., Міroshnychenkо Т. М., Bashtan N. О. Survival of Sweet Potato Meristems Under Different Cryopreservation Regimens. Probl. Cryobiol. Cryomed. 2018, 28 (2), 156. https://doi.org/10.15407/cryo28.02.156
11. Pegg D. E. Principles of cryopreservation. Meth. Mol. Biol. 2015, V. 1257, P. 3–19. https://doi.org/10.1007/978-1-4939-2193-5_1
12. Goldstein G., Nobel P. S. Changes in osmotic pressure and mucilage during low-temperature acclimation of Opuntia ficus-indica. Plant Physiol. 1991, 97 (3), 954?961. https://doi.org/10.1104/pp.97.3.954
13. Kabylbekova B. Zh., Koval'chuk I. Ju., Turdiev T. T., Muhitdinova Z. R. The effect of cryoprotectants and preprocessing methods on viability of apple buds during cryopreservation. Vestnik nauki Kazahskogo agrotehnicheskogo universiteta im. S. Sejfullina (mezhdisciplinarnyj). 2017, 3 (94), 9?17. (In Russian).
14. Verzhuk V. G., Pavlov A. V., Tikhonova O. A., Borzhyh N. V., Dorokhov D. S. Evaluation of the viability genoplasmy of fruit crops after cryopreservation at vapor of liquid nitrogen – 183?185 ?С. Faktori eksperimental'noї evolyutsії organіzmіv. 2013, V. 13, P. 27?30. (In Russian).
15. Sakai A. Development of cryopreservation techniques. Cryopreservation of tropical plant germplasm. Current research progress and application. JIRCAS, Tsukuba & IPGRI, Rome. 2000, P. 1–7.
16. Towill L. E., Forsline P. L. Cryopreservation of sour cherry (Prunus cerasus L.) using a dormant vegetative bud method. Cryo Lett. 1999, 20 (4), 215?225.
17. Yi J. Y., Lee G. A., Lee S. Y., Chung J. W., Shin S. Cryopreservation of Winter-dormant Apple Buds Using Two-step Freezing. Plant Breed. Biotechnol. 2013, 1 (3), 283?289. https://doi.org/10.9787/PBB.2013.1.3.283
18. Gorbunov L. V., Shyianova T. P., Riabchun V. K. Optimization of dehydration conditions of fruit and berry cuttings. Henetychni Resursy Roslyn. 2008, V. 5, P. 182?187. (In Ukrainian).
19. Pavlov1 A. V., Verzhuk V. G., Orlova1 S. Yu., Radchenko O. Ye., Yerastenkova M. V., Dodonova A. Sh., Gavrilkova Ye. A., Sitnikov M. N., Filipenko G. I., Murashev S. V. Cryopreservation as a Method to Preserve Some Fruit and Berry Crops and Wild Medicinal Plants. Probl. Cryobiol. Cryomed. 2019, 29 (1), 044–057. https://doi.org/10.15407/cryo29.01.044
20. Liu Y., Wang X., Liu L. Analysis of genetic variation in surviving apple shoots following cryopreservation by vitrification. Plant Sci. 2004, 166 (3), 677?685. https://doi.org/10.1016/j.plantsci.2003.11.003
21. Rey H. Y., Faloci M., Medina R., Dolce N., Engelmann F., Mroginski L. Cryopreservation of Arachis pintoi (leguminosae) somatic embryos. Cryo Lett. 2013, 34 (6), 571?582.
22. Devi S. D., Kumaria S., Das M. C. Development of Cryopreservation Protocol for Aquilaria malaccensis Lam., a Recalcitrant Seeded Tropical Tree Species. Cryo Lett. 2019, 40 (1), 18?27.
23. Gorbunov L. V. Reproducibility results for cryopreservation of different variety cuttings of pomefruit trees. Problemy Kriobiologii. 2009, 19 (4), 473?480. (In Russian).
24. Gorbunov L. V., Petrov I. V. Interrelation between type and cultivar of berry-like crop and cuttings cryopreservation results. Biotechnol. acta. 2013, 6 (2), 121?127. (In Russian). https://doi.org/10.15407/biotech6.02.121
25. Gorbunov L. V., Riabchun V. K., Shyianova T. P., Salina A. S. Method of long-term preservation of fruit and berry cuttings. Ukraine patent UA 47845. 2010 feb 25.