ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No 3, 2019
С. 24-40, библ. 69, англ.
УДК: 539:616.34
https://doi.org/10.15407/biotech12.03.024
TOXICITY OF SILVER NANOPARTICLES LOADED WITH Pleurotus tuber-regium EXTRACT ON RATS
Sukumar Dandapat 1, Manoj Kumar 1, Rakesh Ranjan1, 2, Manoranjan Prasad Sinha1
1University Department of Zoology, Ranchi University, Jharkhand, India
2Department of Zoology, St. Xavier’s College, Ranchi University, Jharkhand, India
The aim of the work was to provide synthesis and characterization of silver nanoparticles loaded with P. tuber-regium extract and to assess their acute toxicity and haemotoxicity activity on rats. Acute toxicity of silver nanoparticles was studied by up-and-down-procedure and haemotoxicity was analyzed by differential red bload cell (RBC) count. UV-visible spectroscopy analysis provided peak at 463.9 nm. Scanning electron microscopy analysis showed nanoparticles of 60.8 nm to 94.9 nm in size and spherical in shape. X-ray diffraction analysis showed 125.7 nm average sizes of the silver nanoparticles. Dynamic light scattering analysis provided the average diameter 71.4 nm and zeta potential of –11.2 mV of the synthesized nanoparticles. Fourier transform infrared spectroscopy analysis showed major transmission peaks at 3295.6 cm–1 corresponds to O-H stretch for alcohol and phenol 1602.2 cm–1 corresponds to N-H and C=C stretch for primary amine and conjugated alkene. Acute toxicity test showed no mortality, gross behavioural changes and decreased body weight. Significant increase in total RBC (4.30 ± 0.05 х 106/?L), phenotypic coefficient of variation paked cell volume (PCV 26.46 ± 0.01%) and total white blood cell (WBC 8.12 ± 0.27 х 103/?L) was observed in 400 mg/kg extract dose treatment group compared to control group. Thus, synthesized silver nanoparticles loaded with mediated by P. tuber-regium aquous extrac had no acute toxic, haemotoxic effect but they showed dose dependent haematinic and immune modulation activity.
Key words: nanoparticles, health, mushroom.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Gupta R., Ghaffar A., Reddy K. S., Singhi M. Burden of non-communicable diseases in South Asia. Brit. Med. J. 2004, V. 328, P. 807–810. https://doi.org/10.1136/bmj.328.7443.807
2. Boutayeb A. The double burden of communicable and non-communicable diseases in developing countries. Trans. Royal. Soc. Trop. Med. Hygien. 2006, 110 (3), 191–199. https://doi.org/10.1016/j.trstmh.2005.07.021
3. Saravanakumar A., Vanitha S. Hypolipidemic activity of Sesbania grandiflora in triton wr-1339 induced hyperlipidemic rats. Int. J. Phytomed. 2010, V. 2, P. 52–58.
4. Atmakuri L. R., Dathi S. Current trend in herbal medicines. J. Pharma Sci. 2010, 3 (1), 109–113.
5. Dandapat S., Kumar M., Sinha M. P. Effects of Aegle marmelos (L.) leaf extract and green nanoparticles on lipid profile. The Ecoscan. 2014, 5 (Spl. Issue), 157–166.
6. Moghimi S. M., Hunter A. C., Murray J. C. Nanomedicine; Current status and future prospect. The FASEB J. 2005, V. 19, P. 311–330. https://doi.org/10.1096/fj.04-2747rev
7. Dandapat S., Kumar M., Sinha M. P. Synthesis and characterization of Green silver nanoparticles mediated by Aegle marmelos (L.) leaf extract. Nanobio Pharmaceutical Technology Application and Perspectives. ISBN: 978-935-107-293-5. Reed Elsevier India Pvt. Ltd. 2003, P. 31–37.
8. Prasad S. R., Elango K., Damayanthi D., Saranya J. S. Formulation and evaluation of Azathioprine loaded silver nanopartilces for the treatment of rheumatoid arthritis. Asian. J. Biom. Pharma Sci. 2013, 3 (23), 28–32.
9. Athar M., Das A. J. Therapeutic nanoparticles: State-of-the-art of nanomedicine. Adv. Mater. Rev. 2014, 1 (1), 25–37.
10. Albanese A., Tang P. S., Chan W. C. The effect of nanoparticle size, shape, and surfacen chemistry on biological systems. Ann. Rev. Biomed. Eng. 2012, V. 14, P. 1–16. https://doi.org/10.1146/annurev-bioeng-071811-150124
11. Massimiliano P., Medici S., Zoroddu M. A. Toxicity of metal nanoparticles. Massimiliano Peana. 2017, V. 131, P. 69–70.
12. Patel Y., Naraian R., Singh V. K. Medicinal properties of Pleurotus species (Oyster mushroom): a review. World J. Fungal. Plant Biol. 2012, 3 (1), 01–12.
13. Sharma A. K., Gupta M., Shrivastav A., Jana A. M. Antioxidant and anticancer therapeutic potentiality of mushrooms: a review. Int. J. Pharma Sci. Res. 2013, 4 (10), 3795–3802.
14. Dandapat S., Sinha M. P. Antioxidant and anti-inflammatory activity of Pleurotus tuber-regium (Rumph. ex Fr.) Singer. Adv. Biol. Res. 2015, 9 (3), 140–145.
15. Arya V., Thakur N., Kashyap C. P. Preliminary phytochemical analysis of the extracts of Psidium leaves. J. Pharmacog. Phytochem. 2012, 1 (1), 1–6.
16. Kumar M., Sinha M. P. Green nanotechnology: synthesis of silver nanoparticles using aqueous leaf extract of Swertia chirayita. Notulae Sci. Biol. 2017, 9 (3), 443–448. https://doi.org/10.15835/nsb9310107
17. Kumar M., Dandapat S., Ranjan R., Kumar A., Sinha M. P. Plant mediated synthesis of silver nanoparticles using Punica granatum aqueous leaf extract. J. Microbiol. Experiment. 2018, 6 (4), 175–178.
18. Bini M., Tondo C., Capsoni D., Mozzati M. C., Albini B., Galinetto P. Super paramagnetic ZnFe2O4 nanoparticles: The effect of Ca and Gd doping. Material Chemistry and Physics. 2018, V. 204, 72–82. https://doi.org/10.1016/j.matchemphys.2017.10.033
19. Kumar V. S. S., Rao K. V. X-ray peak broadening analysis and optical studies of ZnO nanoparticles derived by surfactant assisted combustion synthesis. J. Nano Electronic. Phy. 2013, 5 (2), 20–26.
20. ZNUM (Zetasizer Nano User manual). Zetasizernano series user manual, Malvern. MAN0485 (1.1), https://www.malvernpanalytical.com/en/learn/knowledge-center/user manuals/MAN0485EN.html. (accessed, January,2013).
21. IMUSG (Instruction Manual User System Guide). IRPrestige-21 (P/N 206-72010) Shimadzu Fourier Transform Infrared Spectrophotometer. Shimazu Corporation, Analytical & measuring instrument division, Koyoto, Japan. 2002, P. 3:1–27.
22. OECD. Organisation for Economic Cooperation and Development (OECD) guidelines for the testing chemicals Section-4. Test No. 425, Acute oral toxicity up and down procedure. 2008, P. 1–27.
23. Saleem U., Amin S., Ahmad B., Azeem H., Anwar F., Mary S. Acute oral toxicity evaluation of aqueous ethanolic extract of Saccharum munja Roxb. roots in albino mice 38 as per OECD 425 TG. Toxicology Reports. 2017, V. 4, P. 580–585. https://doi.org/10.1016/j.toxrep.2017.10.005
24. Oghenesuvwe E. E., Nwoke E. E., Lotanna A. D. Guidelines on dosage calculation and stock solution preparation in experimental animals’ studies. J. Nat. Sci. Res. 2014, 4 (18), 100–106.
25. Singh S., Lal A. A., Simon S., Ramteke P. W. Efficacy of selected botanicals on biochemical constituents of white button mushroom Agaricus bisporus (Lange) Imbach. J. Pharmacog. Phytochem. 2017, 6 (5), 2070–2076.
26. Dandapat S., Sinha M. P., Kumar M., Jaggi Y. Hepatoprotective efficacy of medicinal mushroom Pleurotus tuber-regium. Environ. Experi. Biol. 2015, 13 (3), 103–108.
27. Firdhouse M. J., Lalitha P., Sripathi S. K. Novel synthesis of silver nanoparticles using leaf ethanol extract of Pisonia grandis (R. Br). Deru J. Pharma Sci. 2012, 4 (6), 2320–2326.
28. Vilchis-Nestor A. R., Sanchez-Mendieta V., Camacho-Lopez M. A., Gomez-Espinosa R. M., Camacho-Lopez M. A., Arenas-Alatorre J. A. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Letters. 2008, V. 62, P. 3103–3105. https://doi.org/10.1016/j.matlet.2008.01.138
29. Englebienne P., Hoonacker A. V., Verhas M. Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy. 2012, 17 (2–3), 255–273. https://doi.org/10.1155/2003/372913
30. Khan M., Khan M., Adil S. F., Tahir M. N., Tremel W., Alkhathlan H. Z., Al-Warthan A., Siddiqui M. R. H. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. Int. J. Nanomed. 2013, 8 (1), 1507–1516. https://doi.org/10.2147/IJN.S43309
31. Gujral S. S. UV-Visible spectral analysis of boric acid in different solvents: a case study. Int. J. Pharma Sci. Res. 2015, 6 (2), 830–834.
32. Sujatha S., Tamilselvi S., Subha K., Panneerselvam A. Pathogenicity of bacterial isolates to Catla catla. Int. J. Current. Microbiol. Applied. Sci. 2013, 2 (12), 575–584.
33. Gurunathan S., Han J. W., Park J.-H., Kim J. H. A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res. Let. 2014, 9 (248), 1–11. https://doi.org/10.1186/1556-276X-9-248
34. Brady J. B., Newton R. M., Boardman S. J. New uses for powder X-Ray diffraction experiments in the undergraduate curriculum. J. Geo Edu. 1995, 43 (5), 466–470. https://doi.org/10.5408/0022-1368-43.5.466
35. Mohanta Y. K., Nayak D., Biswas K., Singdevsachan S. K., Allah E. F. A., Hashem A., Alqarawi A. A., Yadav D., Mohanta T. K. Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules. 2018, 23 (655), 1–18. https://doi.org/10.3390/molecules23030655
36. Kumar S. R. S., Senthilkumar P., Surend ran L., Sudhagar B. Ganodermalucidum-oriental mushroom mediated synthesis of gold nanoparticles conjugated with doxorubicin and evaluation of its anticancer potential on human breast cancer mcf-7/dox cells. Int. J. Pharma pharmacol. Sci. 2017, 9 (9), 267–274. https://doi.org/10.22159/ijpps.2017v9i9.20093
37. Phenrat T., Kim H. J., Fagerlund F., Illangasekare T., Tilton R. D., Lowry G. V. Particle size distribution, concentration, and magnetic attraction affect transport of polymermodified Fe0 nanoparticles in sand columns. Sci. Technol. 2009, 43 (13), 5079–5085. https://doi.org/10.1021/es900171v
38. Lim J. K., Yeap S. P., Che H. X., Low S. C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Let. 2013, 8 (381), 1–14. https://doi.org/10.1186/1556-276X-8-381
39. Nanocomposix. Nanocomposix’s guide to dynamic light scattering measurement and analysis: Guidelines for dynamic light scattering measurement and analysis. 2015, V. 1.5, P. 1–8. https://cdn.shopify.com/s/files/1/0257/8237/files/nanoComposix_Guidelines_for_DLS_Measurements_and_Analysis.pdf/
40. Haider A., Kang I.-K. Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review. Adv. Mater. Sci. Eng. 2015, V. 165257, P. 1–16. https://doi.org/10.1155/2015/165257
41. Tucker I. M., Corbett J. C. W., Fatkin J., Mcneil-Watson F. Laser Doppler electrophoresis applied to colloids and surfaces. Cur. Opin. Colloid. Interface Sci. 2015, 20 (4), 215–226. https://doi.org/10.1016/j.cocis.2015.07.001
42. Bhattacharjee S. DLS and zeta potential – what they are and what they are not? J. Control. Release. 2016;235:337-351. https://doi.org/10.1016/j.jconrel.2016.06.017
43. Almeida T. C. A., Larentis A. L., Ferraz H. C. Evaluation of the Stability of Concentrated Emulsions for Lemon Beverages Using Sequential Experimental Designs. Plos One. 2015, 10 (3), e0118690, 1–18. https://doi.org/10.1371/journal.pone.0118690
44. Mishra A., Mishra D. K., Bohra N. K. Synthesis and Characterization of Silver Nanoparticles by Azadirachta indica Leaves. Annals of Arid Zone. 2015, 54 (1–2), 43–49.
45. Kumar T. V. C., Prasad T. N. V. K. V., Adilaxmamma K, Alpharaj M., Muralidhar Y., Prasad P. E. Novel synthesis of nanosilver particles using plant active principle aloin and evaluation of their cytotoxic effect against Staphylococcus aureus. As. Peci J. Tropic. Dis. 2014, 4 (Supp 1), S92–S96. https://doi.org/10.1016/S2222-1808(14)60421-7
46. Zhu Y., Tan A. T. L. Discrimination of wildgrown and cultivated Ganoderma lucidum by Fourier transform infrared spectroscopy and chemometric methods. Am. J. Anal. Chem. 2015, V. 6, P. 830–840. Experimental articles 39
47. Wasser S. P. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl. Microbiol. Biotechnol. 2011, 89 (5), 1323–1332. https://doi.org/10.1007/s00253-010-3067-4
48. Ogbonnia S. O., Mbaka G. O., Anyika E. N., Osegbo O. M., Igbokwe N. H. Evaluation of acute toxicity in mice and subchronic toxicity of hydroethanolic extract of Chromolaena odorata (L.) king and robinson (fam. Asteraceae) in rats. Agri. Biol. J. North. Am. 2010, 1 (5), 859–865. https://doi.org/10.5251/abjna.2010.1.5.859.865
49. Vaghasiya Y. K., Shukla V. J., Chanda S. V. Acute oral toxicity study of pluchea arguta boiss extract in mice. J. Pharmacol. Toxicol. 2010, 6 (2), 113–123. https://doi.org/10.3923/jpt.2011.113.123
50. Wang Y., Ding L., Yao C., Li C., Xing X., Huang Y., Gu Y., Wu M. Toxic effects of metal oxide nanoparticles and their underlying mechanisms. Sci. Chi. Mater. 2017, 60 (2), 93–108. https://doi.org/10.1007/s40843-016-5157-0
51. Fahmy S. R., Hamdi S. A. H. Antioxidant effect of the Egyptian freshwater Procambarus clarkia extract in rat liver and erythrocytes. Afric. J. Pharma Pharmacol. 2011, 5 (6), 776–785. https://doi.org/10.5897/AJPP11.232
52. Akinola O., Gabriel M., Suleiman A. A., Olorunsogbon F. Treatment of Alloxan-Induced Diabetic Rats with Metformin or Glitazones is Associated with Amelioration of Hyperglycaemia and Neuroprotection. The Open Diabetes J. 2012, V. 5, P. 8–12. https://doi.org/10.2174/1876524601205010008
53. Hirotsu C., Tufik S., Andersen M. L. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions. Sleep Sci. 2015, 8 (3), 143–152. https://doi.org/10.1016/j.slsci.2015.09.002
54. Noble D. J., Goolsby W. N., Garraway S. M., Martin K. K., Hochman S. Slow Breathing Can Be Operantly Conditioned in the Rat and May Reduce Sensitivity to Experimental Stressors. Front Physiol. 2017, V. 8, P. 854. https://doi.org/10.3389/fphys.2017.00854
55. Subramanion L. J., Zakaria Z., Chen Y., Lau L. Y., Latha L. Y., Sasidharan S. Acute oral toxicity of methanolic seed extract of cassia fistula in mice. Molecules. 2011, 16 (6), 5268–5282. https://doi.org/10.3390/molecules16065268
56. Gregus Z. Klaassen C. D. Mechanisms of toxicity. Casarett and Doull’s toxicology: The Basic Science of Poisons. Klaassen C. D. (Ed.). 2001, P. 35–82. (In United States).
57. Iversen P. O., Nicolaysen G. Water–for life, Tidsskrift for Den Norske Laegeforening: tidsskrift for praktisk medicin, ny raekke. Euro PMC. 2003, 123 (23), 3402–3405 http:// europepmc.org/med/14713981
58. Oyetayo V. O., Oyetayo F. L. Haematological parameters of rats fed mushroom, Pleurotus sajor-caju diets and orogastrically dosed with probiotic Lactobacillus fermentum OVL. Int. J. Probio Prebio. 2007, 2 (1), 39–42.
59. Promise N., Agomuo E. N., Uloneme G. C., Egwurugwu J. N., Omeh Y. N., Nwakwuo G. C. Effect of Phyllanthus amarus leaf extract on alterations of haematological parameters in Salmonellae typhi infested wistar albino rats. Sci. Res. Essays. 2014, 9 (1), 7–12. https://doi.org/10.5897/SRE2013.5611
60. Arika W. M., Nyamai D. W., Musila M. N., Ngugi M. P., Njagi E. N. M. Hematological markers of in vivo toxicity. J. Hematol. Thrombo Dis. 2016, 4 (2), 1–7.
61. Aslinia F., Mazza J. J., Yale S. H. Megaloblastic anemia and other causes of macrocytosis. Clin. Med. Res. 2006, V. 4, P. 236–241. https://doi.org/10.3121/cmr.4.3.236
62. Waggiallah H., Alzohairy M. The effect of oxidative stress on human red cells glutathione peroxidase, glutathione reductase level, and prevalence of anemia among diabetics. N Am. J. Med. Sci. 2011, V. 3, P. 344–347. https://doi.org/10.4297/najms.2011.3344
63. Stookey J. D., Burg M., Sellmeyer D. E., Greenleaf J. E., Arieff A., Van H. L., Gardner C., King J. C. A proposed method for assessing plasma hypertonicity in vivo. Eur. J. Clin. Nutr. 2007, V. 61, P. 143–146. https://doi.org/10.1038/sj.ejcn.1602481
64. Mizuno T. The extraction and development of antitumour-active polysaccharides from medicinal mushrooms in Japan. Int. J. Med. Mushrooms. 1999, V. 1, P. 9–29. https://doi.org/10.1615/IntJMedMushrooms.v1.i1.20
65. Schalm O. W., Jain N. C. Carrol E. J. Veterinary haematology 3rd Edition. Lea and Fabiger, Philadephia. 1975, P. 421–538.
66. Clime M. J., Hanfin J., Lehrer R. I. Phagocytosis by human eosinophils. Blood. 1968, V. 32, P. 922.
67. Ishikawa F., Miyazaki S. A functional role of neutrophils in the regulation of innate and acquired immunity to bacterial infection. Pak. J. Biol. Scis. 2005, V. 8, P. 940–948. https://doi.org/10.3923/pjbs.2005.940.948
68. Ekundayo F. O., Ayodele B. B., Akinyele B. J. Biosafety assessment of Pleurotus ostreatus and P. pulmonarius cultivated on bonnylight crude oil contaminated soils. Int. Res. J. Biol. Sci. 2014, 3 (6), 18–23.
69. Erhunmwunse N. O., Ejoh S., Ekaye S.-O. Efficiency of Pleurotus florida dietary supplement in reducing Cadmium toxicity in Albino rat (Rattus norvegicus). Nig. Ann. Nat. Sci. 2017, 16 (1), 38–42.