ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 11, No 6, 2018
https://doi.org/10.15407/biotech11.06.082
Р. 82-91, Bibliography 37, English
Universal Decimal Classification: 579.663
T. P. Pirog, D. A. Lutsai, S. I. Antonuk, I. V. Elperin
National University of Food Technologies, Kyiv, Ukraine
The aim of the work was to compare the antimicrobial and anti-adhesive activity (including the ability to destroy biofilms), as well as the effect on oil degradation of the surfactants synthesized by the culture of Acinetobacter calcoaceticus IMV B-7241 on refined waste sunflower oil.
The surfactants were extracted from supernatant of cultural liquid by mixture of chloroform and methanol (2:1). The number of attached cells and the degree of biofilm destruction were analyzed spectrophotometrically. Antimicrobial properties of the surfactants were determined by index of the minimal inhibiting concentration (MIC). The concentration of oil in water was analyzed by the gravimetric method after extraction with hexane.
It was shown that surfactants synthesized in medium with 2% of both refined and waste oil were characterized by high antimicrobial (MIC with respect to bacterial test cultures 0.8–29 μg/ml, Candida albicans D-6 26 — 58 μg/ml) and anti-adhesive (decreasing number of bacterial and fungal cells of test cultures attached to abiotic surfaces by 35–70%, destruction of biofilms by an average of 40–44%) activity. Increasing concentration of waste oil in the medium to 4% was accompanied by the formation of surfactants with low antimicrobial activity, in the presence of which the degree of oil destruction in water (3–6 g/l) was 80–88% in 20 days, which is 10–16% higher than when using surfactants synthesized in a medium with 2% oil.
The obtained data indicate on the need for studies on the effect of cultivation conditions of producer on the properties of synthesized surfactants for the production of final product with stable predetermined properties, depending on the field of practical application.
Key words: microbial surfactants, waste oil, antimicrobial and anti-adhesive activity, oil destruction.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Fracchia L., Banat J. J., Cavallo M., Ceresa C., Banat I. M. Potential therapeutic applications of microbial surface-active compounds. AIMS Bioengineering. 2015, 2 (3), 144–162. https://doi.org/10.3934/bioeng.2015.3.144
2. Paulino B. N., Pess?a M. G., Mano M. C., Molina G., Neri-Numa I. A., Pastore G. M. Current status in biotechnological production and applications of glycolipid biosurfactants. Appl. Microbiol. Biotechnol. 2016, 100 (24), 10265–10293. https://doi.org/10.1007/s00253-016-7980-z
3. Irorere V. U., Tripathi L., Marchant R., McClean S., Banat I. M. Microbial rhamnolipid production: a critical reevaluation of published data and suggested future publication criteria. Appl. Microbiol. Biotechnol. 2017, 101 (10), 3941–3951. https://doi.org/10.1007/s00253-017-8262-0
4. Franco Marcelino P. R., da Silva V. L., Rodrigues Philippini R., Von Zuben C. J., Contiero J., Dos Santos J. C., da Silva S. S. Biosurfactants produced by Scheffersomyces stipitis cultured in sugarcane bagasse hydrolysate as new green larvicides for the control of Aedes aegypti, a vector of neglected tropical diseases. PLoS One. 2017, 12 (11), e0187125. https://doi.org/10.1371/journal.pone.0187125
5. Parthipan P., Preetham E., Machuca L. L., Rahman P. K., Murugan K., Rajasekar A. Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front. Microbiol. 2017, V. 8, P. 193. https://doi.org/10.3389/fmicb.2017.00193
6. Sekhon Randhawa K. K., Rahman P. K. Rhamnolipid biosurfactants – past, present, and future scenario of global market. Front. Microbiol. 2014, V. 5. P. 454. https://doi.org/10.3389/fmicb.2014.00454
7. Chong H., Li Q. Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb. Cell Fact. 2017, 16 (1), 137. https://doi.org/10.1186/s12934-017-0753-2
8. Ebadipour N., Lotfabad T. B., Yaghmaei S., RoostaAzad R. Optimization of low-cost biosurfactant production from agricultural residues through response surface methodology. Prep. Biochem. Biotechnol. 2016, 46 (1), 30–38. https://doi.org/10.1080/10826068.2014.979204
9. Pirog T. P., Shulyakova M. O., Nikituk L. V., Antonuk S. I., Elperin I. V. Industrial waste bioconversion into surfactants by Rhodococcus erythropolis ІMV Ас-5017, Acinetobacter calcoaceticus ІMV В-7241 and Nocardia vaccinii ІMV В-7405. Biotechnol. acta. 2017, 10 (2), 22–33. https://doi.org/10.15407/biotech10.02.022
10. Almeida D. G., Soares da Silva R. C., Luna J. M., Rufino R. D., Santos V. A., Sarubbo L. A. Response surface methodology for optimizing the production of biosurfactant by Candida tropicalis on industrial waste substrates. Front. Microbiol. 2017, V. 8, P. 157. https://doi.org/10.3389/fmicb.2017.00157
11. Pirog T. P., Sidor I. V., Lutsai D. A. Calcium and magnesium cations influence on antimicrobial and antiadhesive activity of Acinetobacter сalcoaceticus ІMV B-7241 surfactants. Biotechnol. acta. 2016, 9 (6), 50–57. https://doi.org/10.15407/biotech9.06.050
12. Pirog T. P., Nikituk L. V., Shevchuk T. A. Influence of divalent cations on synthesis of Nocardia vaccinii ІMV B-7405 surfactants with high antimicrobial and anti-adhesion activity. Mikrobiol. Zh. 2017, 79 (5), 13–22. (In Ukrainian).
13. De Rienzo M. A., Martin P. J. Effect of mono and di-rhamnolipids on biofilms preformed by Bacillus subtilis BBK006. Curr. Microbiol. 2016, 73 (2), 183–189. https://doi.org/10.1007/s00284-016-1046-4
14. Kim K., Lee Y., Ha A., Kim J. I., Park A. R., Yu N. H., Son H., Choi G. J., Park H. W., Lee C. W., Lee T., Lee Y. W., Kim J. C. Chemosensitization of Fusarium graminearum to chemical fungicides using cyclic lipopeptides produced by Bacillus amyloliquefaciens strain JCK-12. Front. Plant Sci. 2017, V. 8, P. 2010. https://doi.org/10.3389/fpls.2017.02010
15. Tiso T., Zauter R., Tulke H., Leuchtle B., Li W. J., Behrens B., Wittgens A., Rosenau F., Hayen H., Blank L. M. Designer rhamnolipids by reduction of congener diversity: production and characterization. Microb. Cell Fact. 2017, 16 (1), 225. https://doi.org/10.1186/s12934-017-0838-y
16. Ramachandran R., Shrivastava M., Narayanan N. N., Thakur R. L., Chakrabarti A., Roy U. Evaluation of antifungal efficacy of three new cyclic lipopeptides of the class bacillomycin from Bacillus subtilis RLID 12.1. Antimicrob. Agents Chemother. 2018, V. 62, P. e01457-17. https://doi.org/10.1128/AAC.01457-17
17. Pirog T. P., Lutsai D. A., Shevchuk T. A., Iutynska G. O., Elperin I. V. Аntimicrobial and anti-adhesive activity of surfactants synthesized by Acinetobacter calcoaceticus IMV V-7241 on technical glycerol. Mikrobiol. Zh. 2018, 80 (2), 14–27. (In Ukrainian). https://doi.org/10.15407/microbiolj80.02.014
18. Pirog T. P., Nikituk L. V., Antonuk S. I., Shevchuk T. A., Iutynskaya G. A. Intensification of Acinetobacter calcoaceticus IMV B-7241 surfactants synthesis on waste sunflower oil. Mikrobiol. Zh. 2018, 80 (1), 15–26. (In Russian). https://doi.org/10.15407/microbiolj80.01.015
19. Choe E., Min D. B. Chemistry of deep-fat frying oils. J. Food Sci. 2007, 72 (5), R77–86.
20. Totani N., Ono M., Burenjargal M., Ojiri Y. Carbonyl compounds vaporize from oil with steam during deep-frying. J. Oleo Sci. 2007, 56 (9), 449–456. https://doi.org/10.5650/jos.56.449
21. Noor S., Punekar N. S. Allosteric NADPglutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon-nitrogen interface. Microbiology. 2005, V. 151, P. 1409–1419. https://doi.org/10.1099/mic.0.27751-0
22. Choudhury R., Noor S., Varadarajalu L. P., Punekar N. S. Delineation of an in vivo inhibitor for Aspergillus glutamate dehydrogenase. Enzyme Microb. Technol. 2008, 42 (2), 151–159. https://doi.org/10.1016/j.enzmictec.2007.08.011
23. Pirog T. P., Shevchuk T. A., Voloshina I. N., Gregirchak N. N. Use of claydite-immobilized oil-oxidizing microbial cells for purification of water from oil. Appl. Biochem. Microbiol. 2005, 41 (1), 51–55. https://doi.org/10.1007/s10438-005-0010-z
24. Pirog T., Sofilkanych A., Konon A., Shevchuk T., Ivanov S. Intensification of surfactants’ synthesis by Rhodococcus erythropolis IMV Ac-5017, Acinetobacter calcoaceticus IMV B-7241 and Nocardia vaccinii K-8 on fried oil and glycerol containing medium. Food Bioprod. Process. 2013, 91 (2), 149–157. https://doi.org/10.1016/j.fbp.2013.01.001
25. Santos D. K., Rufino R. D., Luna J. M., Santos V. A., Sarubbo L. A. Biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016, V. 17 (3). https://doi.org/10.3390/ijms17030401
26. Gudi?a E. J., Teixeira J. A., Rodrigues L. R. Biosurfactants produced by marine microorganisms with therapeutic applications. Mar. Drugs. 2016, V. 14 (2). https://doi.org/10.3390/md14020038
27. Pantazaki A. A., Dimopoulou M. I., Simou O. M., Pritsa A. A. Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8. Appl. Microbiol. Biotechnol. 2010, 88 (4), 939–951. https://doi.org/10.1007/s00253-010-2802-1
28. Rufino R. D., Luna J. M., Sarubbo L. A. Antimicrobial and anti-adhesive potential of a biosurfactant Rufisan produced by Candida lipolytica UCP 0988. Coll. Surf. B. Biointerfaces. 2011, 84 (1), 1–5. https://doi.org/10.1016/j.colsurfb.2010.10.045
29. Nitschke M., Costa S. G., Contiero J. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Appl. Biochem. Biotechnol. 2010, 160 (7), 2066–2074. https://doi.org/10.1007/s12010-009-8707-8
30. Pirog Т. P., Panasyuk E. V., Nikityuk L. V., Iutinska G. O. Influence of cultivation conditions on antimicrobial properties of Nocardia vaccinii ІMV B-7405 surfactants. Biotechnol. acta. 2016, 9 (1), 38–47. https://doi.org/10.15407/biotech9.01.038
31. Pirog T. P., Nikituk L. V., Antonuk S. I., Shevchuk T. A., Iutynska G. O. Peculiarities of Nocardia vaccinii ІMV В-7405 surfactants synthesis on waste oil of different quality and their antimicrobial properties. Mikrobiol. Zh. 2017, 79 (2), 13–22. (In Ukrainian). https://doi.org/10.15407/microbiolj79.02.013
32. Pirog T. P., Nikituk L. V., Tymoshuk K. V., Shevchuk T. A., Iutynska G. O. Biological properties of Nocardia vaccinii IMV B-7405 surfactants synthesized on fried sunflower oil. Mikrobiol. Zh. 2016, 78 (2), 2–12. (In Ukrainian). http://microbiolj.org.ua/images/files/magazine/2016/2/2016_78_2_01_Pirog.pdf
33. Hajfarajollah H., Mokhtarani B., Noghabi K. A. Newly antibacterial and antiadhesive lipopeptide biosurfactant secreted by a probiotic strain, Propionibacterium freudenreichii. Appl. Biochem. Biotechnol. 2014, 74 (8), 2725–2740. https://doi.org/10.1007/s12010-014-1221-7
34. Pirog T. P., Savenko I. V., Lutsay D. A. Microbial surface-active substances as antiadhesive agents. Biotechnol. acta. 2016, 9 (3), 7–22, https://doi.org/10.15407/biotech9.03.007
35. Kiran G. S., Priyadharsini S., Sajayan A., Priyadharsini G. B., Poulose N., Selvin J. Production of lipopeptide biosurfactant by a marine Nesterenkonia sp. and its application in food industry. Front. Microbiol. 2017, V. 8, P. 1138. https://doi.org/10.3389/fmicb.2017.01138
36. Pirog T. P., Konon A. D., Savenko I. V. Microbial surfactants in environmental technologies. Biotechnol. acta. 2015, 8 (4), 21–39. https://doi.org/10.15407/biotech8.04.021
37. Whang L. M., Liu P. W., Ma C. C., Cheng S. S. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J. Hazard. Mater. 2008, 151 (1), 155–163. https://doi.org/10.1016/j.jhazmat.2007.05.063