ISSN 2410-776X (Onine)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 11, No 6, 2018
https://doi.org/10.15407/biotech11.06.029
Р. 29-38, Bibliography 29, English
Universal Decimal Classification: 544.7+543.429.23+615.322
1Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, Kyiv
2ESC “Institute of Biology” of Taras Shevchenko National University of Kyiv, Ukraine
3“Silicio Biotechnologijos” Company, Vilnius, Lithuania
The aim of the work was to study the effect of methylsilica additions and deuterochloroform hydrophobic medium on the water state in a phytocomposite system “Lymphosilica”.
The water state in a Lymphosilica composite material, created by mechanochemical activation of a mixture of milled medicinal plants and wetting-drying silica A-300 was studied by low-temperature 1H NMR spectroscopy. The parameters of bound water layers in the initial composite and hydrated mixtures with methylsilica in air and hydrophobic media were measured. It was shown that liquid and solid hydrophobic agents reduced the water binding with the cellulose components of medicinal plants. This can be used to control desorption rate of the bioactive complex for oral and transdermal use such herbal biological active components.
Key words: nanocomposite, hydrophobic silica.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
References
1. Georgievskiy V. P., Komissarenko N. F., Dmytruk S. Е. Biological activity substances of medical plants. Novosibirsk: Nauka. 1990, 332 p. (In Russian).
2. Fumagalli C. Succinic acid and succinic anhydride. In Kirk-Othmer Encyclopedia of Chemical Technology,4th ed.; Kroschwitz J. I., Howe-Grant M., eds. Wiley: New York, NY, USA. 1997, V. 22, P. 1074–1102.
3. Turyshev S. N. Modern phytotherapy. Moskva: GEOTAZ-Medicine. 2007, 448 p. (In Russian).
4. Turov V. V., Krupska Т. V., Golovan А. P., Аndriyko L. S., Кartel M. Т. Composite systems of prolonged action on the basis of milled medicinal plants and nanosilicas. Science and Innovation. 2017, 13 (2), 59–67. (In Ukrainian). https://doi.org/10.15407/scin13.02.059
5. Turov V. V., Krupskaya Т. V., Golovan А. P., Кartel N. Т. Composite systems based on milled flowers Calendula officinalis and nanosilica A-300. Reports of the National Academy of Sciences of Ukraine. 2017, N 4, P. 76 — 83. (In Russian).
6. Chuiko A. A., Pogorelyy V. K., Barvinchenko V. N., Lipkovskaya N. A., Kovtyukhova N. I., Turov V. V. Physical-chemical and clinical justification of the effectiveness of phytosyl family drugs. Chemistry, Physics and Technology of Surface. 1999, V. 3, P. 3–9. (In Russian).
7. Structure and physico-chemical properties of celluloses and nanocomposites based on them. Ed. Alyoshyna L. A., Gurtova V. A., Melech N. V. Petrozavodsk: Publishing house of PetrSU. 2014, 240 p. (In Russian).
8. Shulga O. V., Kerchhoff J., Turov V. V. The Influence of the Dispersed Oxides on the Interface Energy of the Microcristalline Cellulose in Water Suspension. Methoporous and Microporous Materials. Chemistry, Physics and Technology of Surface. 2001, N 4–6, Р. 267–274.
9. Medical chemistry and clinical application of silica dioxide, Ed. Chuiko A. A. Kyiv: Nauk. dumka. 2003, 416 p. (In Russian).
10. Turov V. V., Morozova L. P., Shtatko O. I., Lutsyuk M. B., Turov A. A., Taran I. V. Influence of contact with nanosilica A-300 on the hydration of the subcellular material of the rat’s small intestine. Chemistry, Physics and Technology of Surface. 2013, 4 (1), 67–77. (In Ukrainian).
11. Krupska T. V., Turova A. A., Gun’ko V. M., Turov V. V. Influence of highly dispersed ma terials on physiological activity of yeast cells. Biopolymers and Cell. 2009, 25 (4), 290–297. https://doi.org/10.7124/bc.0007E8
12. Tertykh V. A., Belyakova L. A. Chemical reactions involving the surface of silica. Kyiv: Nauk. dumka. 1991, 246 p. (In Russian).
13. Protsak I. S., Tertykh V. A., Bolbukh Yu. M., Sternik D., Derylo-Marczewska A. Synthesis and properties of fumed silicas modified with mixtures of poly(methylphenylsiloxane) and dimethyl carbonate. World J. NanoSci Engineer. (WJNSE). 2016, 5 (4), 152–160. https://doi.org/10.4236/wjnse.2015.54017
14. Gun’ko V. M., Turov V. V., Gorbik P. P. Water at the interface. Кyiv: Nauk. dumka. 2009, 694 p. (In Russian).
15. Gun’ko V. M., Turov V. V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. New York: Taylor & Francis. 2013, 1006 p. https://doi.org/10.1201/b14202
16. Gun’ko V. M., Turov V. V., Bogatyrev V. M., Zarko V. I., Leboda R., Goncharuk E. V., Novza A. A., Turov A. V., Chuiko A. A. Unusual properties of water at hydrophilic/hydrophobic Interfaces. Adv. Colloid. Interf. Sci. 2005, 118 (1–3), 125–172. https://doi.org/10.1016/j.cis.2005.07.003
17. Turov V. V., Gun’ko V. M. Clustered water and ways to use it. Kyiv: Nauk. dumka. 2011, 316 p. (In Russian).
18. Krupskaya T. V., Turov V. V., Barvinchenko V. M., Filatova K. O., Suvorova L. A., Kartel M. T. Methods of sealing nano-silica. Ukraine. Patent № 105151, March 10, 2016. (In Ukrainian).
19. Krupskaya T. V., Turov V. V., Barvinchenko V. M., Filatova K. O., Jan-Luca I., Kartel M. T. Influence of the “wetting-drying” compaction on the adsorptive characteristics of nanosilica A-300. Ads. Sci. & Technol. 2017, 36 (1–2), 300–310.
20. Thermodynamic properties of individual substances. Ed. Glushkov V. P. Moskva: Science. 1978, 495 p. (In Russian).
21. Petrov O. V., Furo I. NMR cryoporometry: Principles, application and potential. Progr. NMR. 2009, V. 54, P. 97–122. https://doi.org/10.1016/j.pnmrs.2008.06.001
22. Kinney D. R., Chaung I-S., Maciel G. E. Water and the Silica Surface As Studied by Variable Temperature High Resolution 1H NMR. J. Am. ChemSoc. 1993, N 115, P. 6786–6794. https://doi.org/10.1021/ja00068a041
23. Wiggins P. M., MacClement B. A. E. Two states of water found in hydrophobic clefts: their possible contribution to mechanisms of cation pumps and other enzymes. Internat. Rev. Cytol. 1987, V. 108, P. 249–303. https://doi.org/10.1016/S0074-7696(08)61440-0
24. Dore J. Structural studies of water in cinfined geometry by neutron difraction. Chem. Phys. 2000, V. 258, P. 327–347. https://doi.org/10.1016/S0301-0104(00)00208-1
25. Chaplin M. F. A proposal for structuring of water. Biophys. Chem. 1999, V. 83, Р. 211–221.
26. Yaminsky V. V., Vogler E. A. Hydrophobic hydration. Curr. Opin. Colloid Interface Science. 2001, N 6, P. 342–349. https://doi.org/10.1016/S1359-0294(01)00104-2
27. Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature. 2005, V. 437, P. 640–647. https://doi.org/10.1038/nature04162
28. Mitra R. K., Verma P. K., Pal S. K. Exploration of the Dynamical Evolution and the Associated Energetics of Water Nanoclusters Formed in a Hydrophobic Solvent. J. Phys. Chem. B. 2009, V. 113, P. 4744–4750. https://doi.org/10.1021/jp8085705
29. Hatakeyama T., Nakamura K., Hatakeyama H. Determination of Bound Water Content in Polymers by DTA, DSC and TG. Termochemica Acta. 1988, V. 123, P. 153–161. https://doi.org/10.1016/0040-6031(88)80018-2