"Biotechnologia Acta" V. 10, No 2, 2017
https://doi.org/10.15407/biotech10.02.007
Р. 7-21, Bibliography 49, English
Universal Decimal Classification: 591.139
MODERN BIOTECHNOLOGICAL APPROACHES TO LIFESPAN EXTENSION OF ANIMALS AND HUMANS
Palladian Institute of Biochemistry of the National Academy of Sciences of Ukraine, Kyiv
The purpose of the research was to analyze current data concerning the problem of extending the life of multicellular animals and humans. The modern views about the processes of aging and prolongation of life are presented. The analysis focused on the genetic mechanisms of aging and mainly biotechnological approaches (genetic engineering, gene therapy, the use of stem cells, and the reprogramming of the genome) to prolong the life of multicellular organisms. For comparison, some traditional methods of prolonging life are described (drug therapy, exercise training, calorically restricted nutrition). This analysis allows to postulate the perspectives and advantages of using biotechnological methods for prolonging life in comparison with traditional ones.
Key words: aging, lifespan extension, stem cells, genome reprogramming.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2017
References
1. Arora B. P. Anti-aging medicine. Indian J. Plast. Surg. 2008, V. 41, P. S130–S133. PMCID: PMC2825135.
2. Frolkis V. V., Muradian H. K. Aging, evolution and lifespan extension. Kiyv: Naukova dumka. 1992, 336 p. (In Russian).
3. Kunah V. A. Biotehnology of medicinal plants. Genetic, physiological and biochemical basis. Kiyv: Logos. 2005, 730 p. (In Ukranian).
4. Wang C., Li Q., Redden D. T., Weindruch R., Allison D. B. Statistical methods for testing effects on ?maximum lifespan”. Mech. Ageing Develop. 2004, 125 (9), 629–632.
5. Dong X., Milholland B., Vijg J. Evidence for a limit to human lifespan. Nature. 2016, V. 538, P. 257–259. https://doi.org/10.1038/nature19793.
6. Kyriazis M. Rejuvenation biotechnologies are ineffective in ageing. World J. Transl. Med. 2015, 4 (2), 51–54.
7. Moskalev A. A., Aliper A. M., Smit-McBride Z., Buzdin A., Zhavoronkov A. Genetics and epigenetics of aging and longevity. Cell Cycle. 2014, 13 (7), 1063–1077.
8. Miller R. A. Genes Against Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67A (5), 495?502. https://doi.org/10.1093/gerona/gls082.
9. Moskalev A. Aging and genes. Saint Petersburg: Nauka. 2008, 358 p.
10. Levitsky E. L. Age-dependent changes of DNA replication in rat spleen and kidney. Gerontology. 1980, 26 (6), 321?326.
11. Gerasimova V. V., Levitsky E. L. Growth of replicating DNA chain in adult and old rat spleen. Gerontology. 1982, 28 (4), 217?222.
12. Shammas M. A. Telomeres, lifestyle, cancer, and aging. Curr. Opin. Clin. Nutr. Metab. Care. 2011, 14 (1), 28–34. https://doi.org/10.1097/MCO.0b013e32834121b1.
13. Bohr V. A., Anson R. M. DNA damage, mutation and fine structure DNA repair in aging. Mutat. Res. 1995, 338 (1), 25?34.
14. Frolkis V. V., Bezrukov V. V., Kulchitsky O. K. Aging and experimental pathology of cardiovascular system. Kiyv: Naukova dumka. 1994, 60 р. (In Russian).
15. Frolkis V. V., Bezrukov V. V., Kulchitsky O. K. The aging cardiovascular system: physiology and pathology. N. Y.: Springer Publ.Comp. 1996, 238 р.
16. Bogomolets А. А. Prolongation of Life. Кyiv: National Academy of Sciences of USSR Publishing. 1940, 143 p. (In Russian).
17. Jaenisch R., Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 2003, V. 33, P. 245?254. https://doi.org/10.1038/ng1089
18. Zhang Y., Xie Y., Berglund E. D., Mangelsdorf D. J. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife. 2012, V. 1, P. e00065. https://doi.org/10.7554/eLife.00065
19. Kaniuk M. I. Prospects of curcumin use in nanobiotechnology. Biotechnol. acta. 2016, N 3, P. 23?36. (In Ukrainian).
20. Kim So-Hee, Lee Eun-Young, Cho Kyung-Hyun. Incorporation of Human Growth Hormone-2 into Proteoliposome Enhances Tissue Regeneration with Anti-Oxidant and Anti-Senescence Activities. Rejuvenation Research. 2015, 18 (1), 20?29. https://doi.org/10.1089/rej.2014.1594
21. Calabrese V., Scapagnini G., Davinelli S., Koverech G., Koverech A., De Pasquale C., Salinaro A. T., Scuto M., Calabrese E. J., Genazzani A. R. Sex hormonal regulation and hormesis in aging and longevity: role of vitagenes. J. Cell Commun. Signal. 2014, 8 (4), 369?384. https://doi.org/10.1007/s12079-014-0253-7.
22. Garatachea N., Pareja-Galeano H., Sanchis-Gomar F., Santos-Lozano A., Fiuza-Luces C., Mor?n M., Emanuele E., Joyner M. J., Lucia A. Exercise Attenuates the Major Hallmarks of Aging. Rejuvenation Res. 2015, 18 (1), 57–89. https://doi.org/10.1089/rej.2014.1623
23. Yunger E., Safra M., Levi-Ferber M., Haviv-Chesner A., Henis-Korenblit S. Innate immunity mediated longevity and longevity induced by germ cell removal converge on the C-type lectin domain protein IRG-7. Innate immunity mediated longevity and longevity induced by germ cell removal converge on the C-type lectin domain protein IRG-7. PLOS Genetics. 2017. https://doi.org/10.1371/journal.pgen.1006577
24. Joshi S., Davidson G., Le Gras S., Watanabe S., Braun T., Mengu G., Davidson I. TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo. PLOS Genetics. 2017. https://doi.org/10.1371/journal.pgen.1006600
25. Clemson L., Singh M. A. F., Bundy A., Cumming R. G., Manollaras K., O’Loughlin P., Black D. Integration of balance and strength training into daily life activity to reduce rate of falls in older people (the LiFE study): randomised parallel trial. BMJ. 2012, V. 345, P. e4547. https://doi.org/10.1136/bmj.e4547
26. McCay C. M., Crowell M. F., Maynard L. A. The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. 1935, V. 10, P. 63–79.
27. McDonald R. B., Ramsey J. J. Honoring Clive McCay and 75 Years of Calorie Restriction Research. J. Nutr. 2010, 140 (7), 1205–1210. doi: 10.3945/ jn.110.122804.
28. Weindruch R., Sohal R. S. Caloric intake and aging. New Engl. J. Med. 1997, V. 337, P. 984–986.
29. DeLany J. P., Hansen B. C., Bodkin N. L., Hannah J., Bray G. A. Long-term calorie restriction reduces energy expenditure in aging monkeys. J. Gerontol. Biol. Sci. 1999, V. 4A, P. B5.
30. Mu?oz R., Carmody J. S., Stylopoulos N., Davis P., Kaplan L. M. Isolated duodenal exclusion increases energy expenditure and improves glucose homeostasis in diet-induced obese rats. Amer. J. Physiol. – Regulatory, Integrative and Comparative Physiology. 2012, 303 (10), R985?R993. https://doi.org/10.1152/ajpregu.00262.2012
31. Levitsky E. L., Gubskiy Yu. I., Goldshteyn N. B., Litoshenko A. Ya. Lipid peroxidation and polymerase activities rat liver chromatin fractions at aging. Bulleten of experimental biology and medicine. 1989, 57 (6), 693–695. (In Russian).
32. Kyriazis M.(ed). Anti-aging medicine. London: Watkins Publishing. 2005, 305 p.
33. Rattan S. I., Singh S. Progress & Prospects: Gene therapy in aging. Gene Therapy. 2009, 16 (1), 3–9. https://doi.org/10.1038/gt.2008.166.
34. Ocampo A., Reddy P., Martinez-Redondo P., Platero-Luengo A., Hatanaka F., Hishida T., Li M., Lam D., Kurita M., Beyret E., Araoka T., Vazquez-Ferrer E., Donoso D., Luis J., Jinna Xu R., Rodriguez C., Gabriel E., Estrella N., Delicado N., Josep M., Isabel C., Pedro G., Juan G., Belmonte C. I. In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell. 2016, 167 (7), 1719–1733. doi: org/10.1016/j.cell.2016. 11.052.
35. Rohani L., Johnson A. A., Arnold A., Stolzing A. The aging signature: a hallmark of induced pluripotent stem cells? Aging Cell. 2014, 13 (1), 2–7. https://doi.org/10.1111/acel.12182
36. Fahy G. M., West M. D., Coles L. S., Harris S. B. (reds). The Future of Aging. Pathways to Human Life Extension. N.Y.–London: Springer. 2010, 865 p.
37. Nishida F., Morel G. R., Here?? C. B., Schwerdt J. I., Goya R. G., Portiansky E. L. Restorative effect of intracerebroventricular insulin-like growth factor-I gene therapy on motor performance in aging rats. Neuroscience. 2011, V. 177, P. 195–206. doi: 10.1016/j.neuroscience.2011. 01.013.
38. Rodr?guez S. S., Schwerdt J. I., Barbeito C. G., Flamini M. A., Ye Han M., Bohn C., Rodolfo G. Hypothalamic IGF-I Gene Therapy Prolongs Estrous Cyclicity and Protects Ovarian Structure in Middle-Aged Female Rats Endocrinology. 2013, 154 (6), 2166–2173. doi: org/10.1210/en.2013-1069.
39. Lee A. R., Shimoike T., Wakayama T., Kishigami S. Phenotypes of Aging Postovulatory Oocytes After Somatic Cell Nuclear Transfer in Mice. Cellular Reprogramming. 2016, 18 (3), 147–153. https://doi.org/10.1089/cell.2016.0014
40. Stuckelberger A., Wanner Ph. Anti-Aging Medicine: Myths and Chances. ETH, Zurich. 2008, 304 p.
41. Nurkovic J., Volarevic V., Lako M., Armstrong L., Arsenijevic N., Stojkovic M. Aging of Stem and Progenitor Cells: Mechanisms, Impact on Therapeutic Potential, and Rejuvenation. Rejuvenation Res. 2016, 19 (1), 3–12. https://doi.org/10.1089/rej.2015.1676
42. Lapasset L. , Milhavet O., Prieur A., Besnard E., Babled A., A?t-Hamou N., Leschik J., Pellestor F., Ramirez J.-M., De Vos J., Lehmann S., Lemaitre J.-M. Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 2011, V. 25, P. 2248–2253. doi: 10.1101/gad.173922. 111.
43. Mertens J., Apu? C., Paquola M., Ku M., Hatch E., B?hnke L., Ladjevardi S., McGrath S., Campbell B., Lee H., Herdy J. R., Gon?alves T. J., Toda T., Kim Y., Winkler J., Yao J., Hetzer M. W., Gage F. H. Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects. Cell Stem Cell. 2015, V. 17, Issue 6, P. 705–718. doi: http://dx.doi.org/10.1016/j.stem. 2015.09.001.
44. Mendelsohn A. R., Larrick J. W. Rejuvenating Muscle Stem Cell Function: Restoring Quiescence and Overcoming Senescence. Rejuvenation Res. 2016, 19 (2), 182?186. https://doi.org/10.1089/rej.2016.1829
45. Uezumi M. I., Uezumi A., Tsuchida K., Fukada S. I., Yamamoto H., Yamamoto N., Shiomi K., Hashimoto N. Pro-Insulin-Like Growth Factor-II Ameliorates Age-Related Inefficient Regenerative Response by Orchestrating Self-Reinforcement Mechanism of Muscle Regeneration. Stem Cells. 2015, 33 (8), 2456–2458. https://doi.org/10.1002/stem.2045
46. Bigot A., Duddy W. J., Ouandaogo Z. G., Negroni E., Mariot V., Ghimbovschi S., Harmon B., Wielgosik A., Loiseau C., Devaney J., Dumonceaux J., Butler-Browne G., Mouly V., Duguez S. Age-Associated Methylation Suppresses SPRY1, Leading to a Failure of Re-quiescence and Loss of the Reserve Stem Cell Pool in Elderly Muscle. Cell Rep. 2015, 13 (6), 1172–1182. https://doi.org/10.1016/j.celrep.2015.09.067
47. Sun J., Folk D., Bradley T. J., Tower J. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics. 2002, 161 (2), 661–672.
48. Levitsky E. L. Mechanisms and age-related peculiarities on nuclear DNA replication. Ukr. Biochemical J. 1984, 56 (4), 460–472. (In Russian).
49. Miller R. A. Genes Against Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67A (5), 495?502. doi: https://doi.org/10.1093/gerona/gls082