"Biotechnologia Acta" V. 9, No 6, 2016
https://doi.org/10.15407/biotech9.06.039
Р. 39-49, Bibliography 28, English
Universal Decimal Classification: 577.114.083:543.544.153:543.545.2
HONEYBEE (Apis mellifera) CHITOSAN: PURIFICATION, HETEROGENEITY AND HEMOCOAGULATING ACTIVITY
1 Institute of Cell Biology of the National Academy of Sciences of Ukraine, Lviv
2 Danylo Halytsky Lviv National Medical University, Ukraine
3 Ivan Franko National University, Lviv, Ukraine
The aim of the research was to elaborate the method of chitosan preparation obtaining from honeybee corpses. It included the following stages: 1) washing of bee corpses with hot water; 2) delipidation of powdered material with petrol ether; 3) decalcification by EDTA at pH 4; 4) deproteination by 3 fold treatment with 5% NaOH 1 h at 70 oC; 5) bleaching of chitin with sodium hypochlorite; 6) deacetylation of chitin in 40% NaOH solution at 115 oC for 3 h; 7) purification of chitosan by its dissolving in 3% acetic acid and precipitation with ammonia at pH 8,5; 8) separation into three fractions precipitated at pH 6.4, 7.0 and 8.6. The yield of chitosan from dry bee powder was 8.5–10.0. A distinct diversity in the molecular mass of different chitosan fractions was revealed in the range of 80–320 kDa. Heterogeneity of chitosan samples was studied using gel permeation chromatography on Acrylex P-150 and electrophoresis in a slab of polyacrylamide gel with a stepwise gradient of acrylamide concentration 5, 10, 15, 20% in pH 4.5 buffer system. High molecular mass chitosan possessed blood coagulating activity, while low molecular mass fractions were poorly active. The rate of blood clot formation induced by active honeybee chitosan was 3 times lower comparing with that of chitosans obtained from crabs or shrimps.
Ключевые слова: bee subpestilence, chitosan.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2016
References
1. Felse P. A., Panda T. Studies on application of chitin and its derivatives. Bioprep. Engin. 1999, V. 20, P. 505–512.
2. Chitin and Chitosan. Production, properties and usage. Ed.: Skriabin К. G., Vikhoreva G. A., Varlamov V. P. Мoskva: Nauka. 2002, 368 p. (In Russian).
3. Rinaudo M. Chitin and chitosan: properties and applications. Progr. Polym. Sci. 2006, 31 (7), 603–632. doi: 10.1016/j.progpolymsci.2006.06.001. https://doi.org/10.1016/j.progpolymsci.2006.06.001
4. Nemtsev S. V., Zuyeva O. U., Hismatullin M. R., Albulov A. I., Varlamov V. P. Obtaining of chitin and chitosan from honeybees. Applied biochem. microbiol. 2004, 40 (1), 46–50. (In Russian).
5. Selionova M. I., Pogarskaya N. I. Method of obtaining of chitosan-melanin complex from bee corpses. R. F. Patent Ru 2 382 051. February 20. 2010. (In Russian).
6. Draczynski Z. Honeybee corpses as an available source of chitin. J. Appl. Polymer Sci. 2008, V. 109, P. 1974–1981. doi: 10.002/app.
7. Murat Kaya, Muhammad Mujtaba, Esra Bulut, Bahar Akyuz, Laura Zelencova, Karwan Sofi. Fluctuation in physicochemical properties of chitins extracted from different body parts of honeybee. Carbohydr. Polym. 2015, V. 132, P. 9–16. https://doi.org/10.1016/j.carbpol.2015.06.008
8. Narguess H. Marei, Emtithal Abd El-Samie, Taher Salah, Gamal R. Saad Ahmed H. M. Elwahy. Isolation and characterization of chitosan from different local insects in Egypt. Int. J. Biol. Macromol. 2016, V. 82, P. 871–877. doi: org/10.1016/j.ijbiolmac.2015.10.024.
9. Paulino A. T., Simionato J. I., Garcia J. C., Nozaki J. Characterization of chitosan and chitin produced from silkworm chrysalides. Carbohydr. Polym. 2006, V. 64, P. 98–103. https://doi.org/10.1016/j.carbpol.2005.10.032
10. Juraj Majtan, Katar?na B?likova, Oskar Markovic, Jan Grof, Grigorij Kogan, Jozef Simuth. Isolation and characterization of chitin from bumblebee (Bombus terrestris). Int. J. Biol. Macromol. 2007, V. 40, P. 237–241. https://doi.org/10.1016/j.ijbiomac.2006.07.010
11. Kuzin B. A., Babievsky C. K., Prokhorenkova G. K., Kuzin A. B. Method of obtaining of chitosan. R. F. Patent Ru 2 067 588. October 10. 1996. (In Russian).
12. Kashina G. V., Shelepov V. G., Fefelova I.A. Biologically active substances from bee corpses. Pchelovodstvo. 2014, N 8, P. 58–59. (In Russian).
13. Kariakin Yu.V., Angelov I.I. Pure chemical substances. Moskva:Khimiya. 1974, P. 286. (In Russian).
14. Chloramin B. Instruction for application. www.profitstyle.ru/ xloramin2.html. (In Russian).
15. Costa C. N., Teixeira V. G., Delpecha M. C., Souza J. V., Costa M. A. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride. Carbohydr. Polym. 2015, V. 133, P. 245–250. doi: 10.1016/j.carbpol.2015.06.094. https://doi.org/10.1016/j.carbpol.2015.06.094
16. Chukeaw Apinya. Efficiency of chitosan membrane for water-ethanol separation using pervaporation process. A thesis of Master of Science in Physical Chemistry. Prince Songkla University, Thailand. 2007, P. 72–73. kb.psu.ac.th/psukb/bitstream/2853/ 1356/2/289021_app.pdf.
17. Lootsik M. D., Bilyy R. A., Lutsyk M. M., Stoika R. S. Preparation of chitosan with high blood clotting activity and its hemostatic potential assessment. Biotechnol. Acta. 2015, 7 (6), P. 32–40. https://doi.org/10.15407/biotech8.06.032
18. Maurer H. R. Disc-electrophorese. Berlin:Walter de Gruyter&Co. 1968. Russian edition: H. Maurer. Disc-electrophorez. (Ed.: Levin E. D.). Moskva: Mir. 1971, P. 58–67.
19. Audy P. I., Asselin A. Gel electrophoretic analysis of chitosan hydrolysis products. Electrophoresis. 1992, 13 (5), P. 334–337. https://doi.org/10.1002/elps.1150130167
20. Nitar New, Tetsuya Furuike, Hiroshi Tamura. Chitin and chitosan from terrestrial organisms. In: Chitin, chitosan, oligosaccharides and their derivatives. Biological activities and their application. Ed.: Se-Kwon Kim. CRC Press. Taylor &Francis Group. 2011, P. 3–10.
21. Kumirska J., Czerwicka M., Kaczynski Z., Bychowska A., Brzozowski K., Thoming J., Stepnowski P. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar. Drugs. 2010, V. 8, P. 1567–1636. https://doi.org/10.3390/md8051567
22. Brugnerotto J., Lizardi J., Goycoolea F. M., Arguelles-Monal W., Desbrieres J., Rinaudo M. An infrared investigation in relation with chitin and chitosan characterization. Polymer. 2001, V. 42, P. 3569–3580. https://doi.org/10.1016/S0032-3861(00)00713-8
23. Muzzarelli R., Tarsi R., Filippini O., Giovanetti E., Biagini G., Varaldo P. Antimicrobial properties of carboxybutyl chitosan. Antimicrob. Agents Chemother. 1990, 34 (10), 2019–2023. https://doi.org/10.1128/AAC.34.10.2019
24. Tikhonov V. E., Stepnova E. A., Babak V. G., Yamskov I. A., Palma-Guerrero J., Jansson H.-B., Lopez-Llorca L. V., Salinas J., Gerasimenko D. V., Avdienko I. D., Varlamov V. P. Bactericidal and antifungal activities of low molecular weight chitosan and its N-/2(3)-(dodecyl-22-enyl)succinoyl/-derivatives. Carbohydr. Polym. 2006, V. 64, P. 66–72. https://doi.org/10.1016/j.carbpol.2005.10.021
25. Jayakumar R., Prabaharan M., Sudheesh Kumar P. T., Nair S. V., Tamura H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29 (3). 322–337. https://doi.org/10.1016/j.biotechadv.2011.01.005
26. Manish P. Patel, Ravi R. Patel, Jayvadan K. Patel. Chitosan mediated targeted drug delivery system: a review. J. Pharm. Pharmaceut. Sci. 2010, 13 (3), 536–557.
27. Xiaosong Li, Min Min, Nan Du, Ying Gu, Tomas Hode, Mark Naylor, Dianjuo Chen, Nordquist R.E., Wei R. Chen. Chitin, chitosan, and glycated chitosan regulate immune responces: a novel adjuvants for cancer vaccine. Clin. Developm. Immunol. 2013, Article ID387023, 8 p. http://dx.doi.org. 10.1155/2013/387023.
28. Smith A., Perelman M., Hinchcliffe M. Chitosan: a promising safe and immune enhancing adjuvant for intranasal vaccines. Hum. Vaccin. Immunother. 2014, 10 (3), 797–807. https://doi.org/10.4161/hv.27449