ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 9, No 4, 2016
https://doi.org/10.15407/biotech9.04.058
Р. 58-66, Bibliography 17, English
Universal Decimal Classification: 664.644.7:611.018.2/.6:615.014.41
ENCAPSULATION OF MESENCHYMAL STROMAL CELLS IN ALGINATE MICROSPHERES
D.Tarusin, S. Mazur, N. Volkova, Yu. Petrenko, V. Zaikov, A. Petrenko
Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv
The research aim work was a comparative study of structural and functional state and capacity for differentiation of multipotent mesenchymal stromal cells, stored at various temperatures either as cell suspensions or within alginate microspheres. Storage was carried out in a culture medium based on α-MEM at temperatures of 4, 22 and 37 °C in sealed cryovials. After 1, 2 and 3 days the alginate microspheres were dissolved and viability (MTT test), the attachment properties and metabolic activity (AB test) were evaluated in monolayer cell culture. It has been shown that the storage of the mesenchymal stromal cells in suspension for 3 days at the indicated temperatures resulted in a decrease of the studied parameters. Mesenchymal stromal cells after storage within alginate microspheres at 22 and 37 °C showed a high viability (78 and 87%, respectively), kept the attachment properties (62 and 70%), metabolic activity (79 and 75%) and ability to differentiation. The results indicate that the mesenchymal stromal cells entrapped in alginate microspheres are more resistant to storage conditions than a suspension of mesenchymal stromal cells. Entrapment in alginate microspheres is a promising technological approach for a short-term storage of mesenchymal stromal cells at positive temperatures.
Key words: multipotent mesenchymal stromal cells, alginate microspheres, metabolic activity, induced differentiation.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2016
References
1 Ouakrim D. A., Pizot C., Boniol M., Malvezzi M., Boniol M., Negri E., Bota M., Jenkins M. A., Bleiberg H., Autier Ph. Trends in colorectal cancer mortality in Europe: retrospective analysis of the WHO mortality database. BMJ. 2015, 351:h4970. https://doi.org/10.1136/bmj.h4970
2 Zavoral M., Suchanek S., Zavada F., Dusek L., Muzik J., Seifert B., Fric P. Colorectal cancer screening in Europe. World J. Gastroenterol. 2009, 15 (47), 5907–5915. https://doi.org/10.3748/wjg.15.5907
3 American Cancer Society. Colorectal Cancer Facts & Figures 2014–2016. Atlanta: American Cancer Society. 2014.
4 Armaghany T., Wilson J. D., Chu Q., Mills G. Genetic alterations incolorectal cancer. Gastrointest. Cancer Res. 2012, V. 5, P 19–27.
5 Mouradov D., Sloggett C., Jorissen R. N., Love C. G., Li S., Burgess A. W., Arango D., Strausberg R. L., Buchanan D., Wormald S., O'Connor L., Wilding J. L., Bicknell D., Tomlinson I. P., Bodmer W. F., Mariadason J. M., Sieber O. M. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 2014, 74 (12), 3238–3247. https://doi.org/10.1158/0008-5472.CAN-14-0013
6 Vu B., Phan N., Pham P. Mesenchymal Stem Cells: vector for targeted cancer therapy. Progr. Stem Cell. 2016, 3 (1), 73–86. https://doi.org/10.15419/psc.v3i01.122
7 Kassem M., Kristiansen M., Abdallah B. M. Mesenchymal stem cells: cell biology and potential use in therapy. Bas. Clin. Pharmacol. Toxicol. 2004, 95 (5), 209–214. https://doi.org/10.1111/j.1742-7843.2004.pto950502.x
8 Miao Z., Jin J., Chen L., Zhu J., Huang W., Zhao J., Qian H., Zhang X. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol. Int. 2006, 30 (9), 681–687.https://doi.org/10.1016/j.cellbi.2006.03.009
9 Zhong Z., Kusznieruk K. P., Popov I. A., Riordan N. H., Izadi H., Yijian L., Sher S., Szczurko O. M., Agadjanyan M. G., Tullis R. H., Harandi A., Reznik B. N., Mamikonyan G. V., Ichim T.E. Induction of antitumor immunity through xenoplacental immunization. J. Transl. Med. 2006, 25 (4), 22. https://doi.org/10.1186/1479-5876-4-22
10 Zhao B., Wang Y., Wu B., Liu S., Wu E., Fan H. X., Gui M. M., Chen L., Li Ch., Ju Y., Zhang W., Meng S. Placenta-derived gp96 as a multivalent prophylactic cancer vaccine. Sci. Rep. 2013, 3, Article number: 1947. https://doi.org/10.1038/srep01947
11 Lee S-L., Hsu S-L. Placental preparation having antitumor activity. U. S. Patent 2004/0076618 A1. Apr. 22, 2004.
12 Svitina H., Kalmukova O., Shelest D., Skachkova O., Garmanchuk L., Shablii V. Cellular immune response in rats with 1,2-dimethylhydrazine-induced colon cancer after transplantation of placenta-derived stem multipotent cells. Cell Org. Transplantol. 2016, 4 (1), 48–60. https://doi.org/10.22494/cot.v4i1.7
13 Per?e M., Cerar A. Morphological and molecular alterations in 1,2 dimethylhydrazine and azoxymethane induced colon carcinogenesis in rats. J. Biomed. Biotechnol. 2011, V. 2011, P 473964. https://doi.org/10.1155/2011/473964
14 Corr?a M. P., Ferreira A. P., Gollner A. M., Rodrigues M. F., Guerra M. C. Markers expression of cell proliferation and apoptosis in basal cell carcinoma. Bras. Dermatol. 2009, 84 (6), 606–614. https://doi.org/10.1590/S0365-05962009000600006
15 Kubben F. J., Peeters-Haesevoets A., Engels L. G., Baeten C. G., Schutte B., Arends J. W., Stockbr?gger R. W., Blijham G. H. Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation. Gut. 1994, 35 (4), 530–535. https://doi.org/10.1136/gut.35.4.530
16 Vermeulen K., Berneman Z. N., van Bockstaele D. R. Cell cycle and apoptosis. Cell Prolif. 2003, 36 (3),165–175. https://doi.org/10.1046/j.1365-2184.2003.00267.x
17 Boeck A.D. Bone marrow derived mesenchymal stem cells in colorectal cancer: neuregulin at the invasion front. Belg. J. Med. Oncol. 2014, 8 (2), 52–54.
18 Hogan N. M., Joyce M. R., Murphy J. M., Barry F. P., O'Brien T., Kerin M. J., Dwyer R. M. Impact of mesenchymal stem cell secreted PAI-1 on colon cancer cell migration and proliferation. Biochem. Biophys. Res. Commun. 2013, 435 (4), 574–579. https://doi.org/10.1016/j.bbrc.2013.05.013
19 Dzobo K., Vogelsang M., Thomford N. E., Dandara C., Kallmeyer K., Pepper M. S., Parker M. I. Wharton's Jelly-Derived Mesenchymal Stromal Cells and Fibroblast-Derived Extracellular Matrix Synergistically Activate Apoptosis in a p21-Dependent Mechanism in WHCO1 and MDA MB 231 Cancer Cells In Vitro. Stem Cells Int. 2016, 2016:4842134. https://doi.org/10.1155/2016/4842134
20 Khakoo A. Y., Pati S., Anderson S. A., Reid W., Elshal M. F., Rovira I. I., Nguyen A. T., Malide D., Combs C. A., Hall G., Zhang J., Raffeld M., Rogers T. B., Stetler-Stevenson W., Frank J. A., Reitz M., Finkel T. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J. Exp. Med. 2006, 203 (5), 1235–1247. https://doi.org/10.1084/jem.20051921