ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 9, No 1, 2016
https://doi.org/10.15407/biotech9.01.097
Р. 97-102, Bibliography 18, English
Universal Decimal Classification: 579.222+57.033+57.037
L. S. Dorosh, T. B. Peretyatko, S. P. Hudz
Lviv Franko National University, Ukraine
The aim of research was to study nitrate reductase activity of sulphate-reducing bacteria Desulfomicrobium sp. CrR3 at the different conditions of cultivation. To determine nitrate reductase activity, sulphate-reducing bacteria Desulfomicrobium sp. CrR3 cultivated in a modified Postgate C medium. Nitrate reductase activity was determined at different conditions: to 15–45 °C, pH 5–9. The highest nitrate reductase activity for Desulfomicrobium sp. CrR3 was at to 25 and 35 °C and pH 7–8. Lowering or raising the temperature and pH caused the inhibition of the nitrate reductase. The highest nitrate reductase activity was found in the soluble fraction of cells (12 µmol nitrite•min-1•mg protein-1). Activity was lower in the cells debris (5 µmol nitrite•min-1•mg protein-1), while it was absent in the culture fluid. It was established that nitrate reductase of bacteria Desulfomicrobium sp. CrR3 is constitutive enzyme. The value of Km for nitrate for studied enzyme in bacteria Desulfomicrobium sp.CrR3 is 1.2 µmol, Vmax – 15.7 µmol nitrite•min-1•mg protein-1), indicating that the high affinity of the enzyme to the substrate. Thus, the cultivation conditions significantly affect the nitrate reductase activity of bacteria Desulfomicrobium sp. CrR3.
Key words: sulphate-reducing bacteria, nitrate reductase activity, conditions of the cultivation.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2016
References
1. Dias J. M., Than M. E., Humm A., Huber R., Bourenkov G. P., Bartunik H. D., Bursakov S., Calvete J., Caldeira J., Carneiro C., Moura J. J. G., Moura I., Rom?o M. J. Crystal structure of the first dissimilatory nitrate reductase at 1.9? solved by MAD methods. Structure. 1999, 7 (1), 65?79. doi: 10.2210/pdb2nap/pdb.
2. Dorosh L. S., Peretyatko T. B., Hudz S. P. Nitrate reductase activity of sulphate-reducing bacteria Desulfomicrobium sp. CrR3. Biolohichni doslidzhennia – 2015: Zbirnyk naukovykh prats, Zhytomyr, Ukraina. 2015. (Іn Ukrainian).
3. Sholyak K. V., Peretyatko T. B., Hudz S. P. Electron acceptor for sulphate-reducing bacteria Desulfomicrobium sp. CrR3 in the oxidation of organic compounds. Biol. Stud. 2013, 7 (2), 57?64. (Іn Ukrainian).
4. Morozkina E. V., Zvyagilskaya R. A. Nitrate reductases: structure, functions, and effect of stress factors. Biochemistry (Mosk.) 2007, 72 (10), 1151?1161. doi: 10.1134/S0006297907100124.
5. Bursakov S. A., Liu M. Y., Paynel W. J., LeGall J., Moura I., Moura J. J. G. Isolation and preliminary characterization of a soluble nitrate reductase from the sulfate-reducing organism Desulfovibrio desulfuricans ATCC 27774. Anaerobe. 1995, V. 1, P. 55?60.
6. Sholyak K. V., Peretyatko T. B., Hudz S. P. Chromium resistant sulphate-reducing bacteria, the allocation of industrial waste waters. Mikrobiol. Bioteсh. 2013, N 2, P. 66?76. (Іn Ukrainian).
7. Postgate J. R. The sulfate-reducing bacteria. 2nd ed. Cambridge: Cambridge Univ. Press. 1984, 199 p.
8. Piroh T. P., Shevchuk T. A., Duhinets O. S. Features oxidation of ethanol by the producer of surfactants Acinetobacter calcoaceticus K-4. Mikrobiol. j. 2010, 72 (6), 3?10.
9. Smarrelli J. R., Campbell W. H. Enzymatic assay of nitrate reductase (EC1.6.6.1). Biochim. Biophys. Acta. 1983, V. 742, P. 435?445.
10. Lowry O. H., Rosenbrough N. J., Farr A. L., Randall R. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193 (1), 265?275.
11. Rodney E., Boyer F. Biochemistry Laboratory: Modern Theory and Techniques. Prentice Hall. 2012, 384 p.
12. Pinto M. F., Estevinho B. N., Crespo R., Rocha F. A., Damas A. M., Martins P. M. Enzyme kinetics: the whole picture reveals hidden meanings. FEBS J. 2015, 282 (12), 2309?2316. doi:10.1111/febs.13275.
13. Bailey N. T. J. Statistical methods in biology. Cambridge: Cambridge University Press. 1995, 252 p.
14. Tarasova N. B, Horshkov O. V., Petrova O. E. Nitrate reductase activity of sulphate-reducing bacteria of Desulfovibrio vulgaris VKM 1388. Mikrobiol. 2009, 78 (2), 192?196. (in Russian).
15. Pingoud A., Urbanke C., Hoggett J., Jeltsch A. Biochemical methods: A concise guide for students and researchers. Wiley-VCH Verlag GmbH. 2002, 374 p.
16. Zumft W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. 1997, 61 (4), 533?616.
17. Marietou A., Richardson D., Cole J., Mohan S. Nitrate reduction by Desulfovibrio desulfuricans: A periplasmic nitrate reductase system that lacks Nap B, but includes a unique tetraheme c-type cytochrom, Nap M. FEMS Microbiol. Lett. 2005, 248 (2), 217?225. doi: 10.1016/j.femsle.2005.05.042.
18. Furina Е. К., Nikolaeva D. A., Bonartseva G. A., Myshkina V. L., L’vov N. P. Reduction of nitrates by Azotobacter indicum and Azotobacter chroococcum cultures. Appl. Biochem. Microbiol. 2002, 38 (6), 558?561.