ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 8, No 5, 2015
https://doi.org/10.15407/biotech8.05.039
Р. 39-48, Bibliography 41, English
Universal Decimal Classification: 575.222.7:581.1
A.A.Peterson, M. Yu. Vasylenko, N. A. Matvieieva, M. V. Kuchuk
Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv
Determination of the presence of the recombinant fusion protein (ESAT6-Ag85B(ΔTMD)-6His) and its accumulation level in duckweed plants (Lemna minor L.) was the aim of the research. ESAT6 and Ag85B are secretory proteins of Mycobacterium tuberculosis and are considered as potential candidates for development of new vaccine against tuberculosis (TB). Transgenic duckweed plants were obtained previously by Agrobacterium rhizogenes-mediated transformation and possessed fusion gene sequence esxA-fbpBΔTMD. Specific polyclonal antibodies were produced in immunized mice to identify levels of accumulation of TB antigens in plants. Recombinant antigen used for mice immunization was obtained in our laboratory by expression in E. coli. Western blot analysis revealed the recombinant tuberculosis antigen ESAT6-Ag85B(ΔTMD)-6His in extracts from transgenic L. minor plants. The level of accumulation of the protein corresponds to 0.4-0.5 µg protein per 1 g of fresh weight of plant. Additionally, the accumulation of recombinant protein was investigated in lyophilized transgenic plants after 1.5 year storage. Duckweed plants accumulating a recombinant analogue of M. tuberculosis secretory proteins can be used for development of plant-based edible vaccines.
Key words: Lemna minor, ESAT6, Ag85B(ΔTMD), genetic transformation, Agrobacterium rhizogenes.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1. Han M., Su T., Zu Y. G., An Z. G. Research advances on transgenic plant vaccines. Yi Chuan Xue Bao. 2006, 33 (4), 285–293. РMID: 16625826.
2. Schillberg S., Twyman R. M., Fischer R. Opportunities for recombinant antigen and antibody expression in transgenic plants – technology assessment. Vaccine. 2005, 23 (15), 1764–1769. PMID: 15734038.
3. Tiwari S., Verma P. C., Singh P. K., Tuli R. Plants as bioreactors for the production of vaccine antigens. Biotechnol. Adv. 2009, 27 (4), 449–467. doi: 10.1016/j.biotechadv.2009.03.006.
4. Fernandez-Fernandez M. R., Mourino M., Rivera J., Rodriguez R., Plana-Duran J., Garcia J. A. Protection of rabbits against rabbit hemorrhagic disease virus by immunization with the VP60 protein expressed in plants with a potyvirus-based vector. Virology . 2001, V. 280, P. 283–291. PMID: 11162842.
5. Houdebine L. M. Production of pharmaceutical proteins by transgenic animals. Comp. Immunol. Microbiol. Infect. Dis. 2009, V. 32, P. 107–121. PMID: 18243312.
6. Kumar G. B. S., Ganapathi T. R., Revathi C. J., Srinivas L., Bapat V. A. Expression of hepatitis B surface antigen in transgenic banana plants. Planta. 2005, V. 222, P. 484–493. PMID: 15918027.
7. Kumar G. B. S., Ganapathi T. R., Srinivas L., Revathi C. J., Bapat V. A. Secretion of hepatitis B surface antigen in transformed tobacco cell suspension cultures. Biotechnol. Lett. 2005, V. 27, P. 927–932. PMID: 16091888.
8. Kumar G. B. S., Ganapathi T. R., Srinivas L., Revathi C. J., Bapat V. A. Expression of hepatitis B surface antigen in potato hairy roots. Plant Sci. 2006, V. 170, P. 918–925. doi:10.1016/j.plantsci.2005.12.015.
9. Gao Y., Ma Y., Li M., Cheng T., Li S. W., Zhang J., Xia N. S. Oral immunization of animals withtransgenic cherry tomatillo expressing HBsAg. World J. Gastroenterol. 2003, V. 9, P. 996–1002. PMID: 12717845.
10. Lauterslager T. G., Florack D. E., Wal T. J., Molthoff J. W., Langeveld J. P., Bosch D., Boersma W. J., Hilgers L. A. Oral immunization of naive and primed animals with transgenic potato tubers expressing LT-B. Vaccine. 2001, V. 19, P. 2749–2755. PMID: 11257419.
11. Chikwamba R., Cunnick J., Hathaway D., McMurray J., Mason H., Wang K. A functional antigen in a practical crop: LT-B producing maize protects mice against Escherichia coli heat labile enterotoxin (LT) and cholera toxin (CT). Transg. Res. 2002, V. 11, P. 479–493. PMID: 12437079.
12. Daniell H., Lee S. B., Panchal T., Wiebe P. O. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplasts. J. Mol. Biol . 2001, V. 311, P. 1001–1009. PMID: 11531335.
13. Mason H. S., Ball J. M., Shi J. J., Jiang X., Estes M. K., Arntzen C. J. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Natl. Acad. Sci. USA. 1996, V. 93, P. 5335–5340. PMCID: PMC39246.
14. Tacket C. O., Mason H. S., Losonsky G., Estes M. K., Levine M. M., Arntzen C. J. Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J. Infect. Dis. 2000, V. 182, P. 302–305. PMID: 10882612.
15. Franconi R., Di Bonito P., Dibello F., Accardi L., Muller A., Cirilli A., Simeone P., Don? M. G., Venuti A., Giorgi C. Plant-derived human papillomavirus 16 E7 oncoprotein induces immune response and specific tumor protection. Cancer Res. 2002, V. 62, P. 3654–3658. PMID: 12097270.
16. G?mez N., Wigdorovitz A., Casta??n S., Gil F., Ord?s R., Borca M. V., Escribano J. M. Oral immunogenicity of the plant derived spike protein from swine-transmissible gastroenteritis coronavirus. Arch. Virol. 2000, V. 145, P. 1725–1732. PMID: 11003480.
17. McMurray D. N. Recent progress in the development and testing of vaccines against human tuberculosis. Int. J. Parasitol. 2003, 33 (5–6), 547–554. PMID: 12782054.
18. Doherty T. M., Andersen P. Vaccines for Tuberculosis: Novel Concepts and Recent Progress. Clin. Microbiol. Rev. 2005, 18 (4), 687–702. PMCID: PMC1265910.
19. Orme I. M. Current progress in tuberculosis vaccine development. Vaccine. 2005, 23 (17–18), 2105–2108. PMID: 15755579.
20. Orme I. M., McMurray D. N., Belislea J. T. Tuberculosis vaccine development: recent progress. Trends Microbiol. 2001, 9 (3), 115–118. PMID: 11239788.
21. Wang Bao-Lin, Ying Xu, Chao-Qun Wu et al. Cloning, expression, and refolding of a secretory protein ESAT-6 of Mycobacterium tuberculosis. Prot. Exp. Purif. 2005, 39 (2), 184–188. PMID: 15642469.
22. Brodin P., Rosenkrands I., Andersen P., Cole S. T., Brosch R. ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol. 2004, V. 12, P. 500–508. PMID: 15488391.
23. Young D., Dye C. The development and impact of tuberculosis vaccines. Cell. 2006, V. 124, P. 683–687. doi:10.1016/j.cell.2006.02.013.
24. Lozes E., Huygen K. 1., Content J. et al. Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex. Vaccine. 1997, 15 (8), 830–833. PMID: 9234526.
25. Weinrich Olsen A., van Pinxteren L. A., Meng Okkels L., Birk Rasmussen P., Andersen P. Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Infect. Immun. 2001, V. 69, P. 2773–2778. PMID: 11292688.
26. Palendira U., Spratt J. M., Britton W. J., Triccas J. A. Expanding the antigenic repertoire of BCG improves protective efficacy against aerosol Mycobacterium tuberculosis infection. Vaccine. 2005, V. 23, P. 1680–1685. PMID: 15705472.
27. Zhu D., Jiang S., Luo X. Therapeutic effects of Ag85B and MPT64 DNA vaccines in a murine model of Mycobacterium tuberculosis infection. Vaccine. 2005, 23 (37), 4619–4624. PMID: 16053938.
28. Zhang H., Peng P., Miao S., Zhao Y., Mao F., Wang L., Bai Y., Xu Z., Wei S., Shi C. Recombinant Mycobacterium smegmatis expressing an ESAT6-CFP10 fusion protein induces anti-mycobacterial immune responses and protects against Mycobacterium tuberculosis challenge in mice. Scand. J. Immunol. 2010, 72 (4), 349–357. PMID: 20883320.
29. Dorokhov Y. L., Sheveleva A. A., Frolova O. Y. et al. Superexpression of tuberculosis antigens in plant leaves. Tuberculosis. 2007, 87 (3), 218–224. PMID: 17182283.
30. Rigano M. M., Dreitz S., Kipnis A. P. et al. Oral immunogenicity of a plant-made, subunit, tuberculosis vaccine. Vaccine. 2006, 24 (5), 691–695. PMID: 16169639.
31. Permyakova N. V., Zagorskaya A. A., Belavin P. A., Uvarova E. A., Nosareva O. V., Nesterov A. E., Novikovskaya A. A., Zav'yalov E. L., Moshkin M. P., Deineko E. V. Transgenic Carrot Expressing Fusion Protein Comprising M. tuberculosis Antigens Induces Immune Response in Mice. Biomed. Res. Int. 2015, V. 2015, Article ID 417565. doi: 10.1155/2015/417565.
32. Mishra S., Yadav D. K., Tuli R. Ubiquitin fusion enhances choleratoxin B subunit expression in transgenic plants and the plant-expressed protein binds GM1 receptors more efficiently. J. Biotechnol. 2006, V. 127, P. 95–108. doi: 10.1016/j.jbiotec.2006.06.002.
33. Sharma M. K., Singh N. K., Jani D., Sisodia R., Thungapathra M., Gautam J. K., Meena L. S., Singh Y., Ghosh A., Tyagi A. K., Sharma A. K. Expression of toxin co-regulated pilus subunit A (TCPA) of Vibrio cholerae and its іmmunogenic epitopes fused to choler atoxin B subunit in transgenic tomato (Solanum lycopersicum). Plant. Cell. Rep. 2008, V. 27, P. 307–318. PMID: 17962948.
34. Gasdaska J. R., Spencer D., Dickey L. Advantages of Therapeutic Protein Production in the Aquatic Plant Lemna. BioProces. J. 2003, 2 (2), 49–56.
35. Y?lmaz E., Akyurt І., G?na G. Use of Duckweed, Lemna mino, as a Protein Feedstuff in Practical Diets for Common Carp, Cyprinus carpio, Fry. Turk. J. Fish. Aquatic Sci. 2004, V. 4, P. 105–109.
36. De Leede L. G., Humphries J. E., Bechet A. C., Van Hoogdalem E. J., Verrijk R., Spencer D. G. Novel controlled-release Lemna-derived IFN-alpha2b (Locteron): pharmacokinetics, pharmacodynamics, and tolerability in a phase I clinical trial. J. Interfer. Cytokine Res. 2008, 28 (2), 113–122. PMID: 18279106.
37. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plantarum. 1962, V. 15, P. 473–497.
38. Matvieieva N. A., Kishchenko O. M., Shakhovsky A. M., Kuchuk M. V. Transfer of ESAT6 and Ag85B antigens to Lemna minor L. plants using Agrobacterium rhizogenes. Biotechnology. 2011, 4 (2), 46–53.
39. Cunha N. B., Murad A. M., Ramos G. L., Maranh?o A. Q., Br?gido M. M., Ara?jo A. C. G., Lacorte C., Arag?o F. J. L., Covas D. T., Fontes A. M., Souza G. H. M. F., Vianna G. R., Rech E. L. Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds. Transg. Res. 2011, V. 20, P. 841–855. doi: 10.1007/s11248-010-9461-y.
40. Kim W. S., Krishnan H. B. Expression of an 11 kDa methionine-rich delta-zein in transgenic soybean results in the formation of two types of novel protein bodies in transitional cells situated between the vascular tissue and storage parenchyma cells. Plant Biotechnol. J. 2004, V. 2, P. 199–210. PMID: 17147611.
41. Yamada Y., Nishizawa K., Yokoo M., Zhao H., Onishi K., Teraishi M., Utsumi S., Ishimoto M., Yoshikawa M. Anti-hypertensive activity of genetically modified soybean seeds accumulating novokinin. Peptides. 2008, V. 29, P. 331–337. PMID: 18226422.