ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
Biotechnologia Acta, V. 8, No 1, 2015;
https://doi.org/10.15407/biotech8.01.049
P. 49-55, Bibliography 27, English
Universal Decimal classification: 577.218:577.29
SO «Institute of food Biotechnology and Genomics of the National Academy of Sciences of Ukraine», Kyiv
Using of new approach with site-specific recombinase system Cre/loxP under the control of 35S-promoter to generate marker-free genetically modified plants was developed. The analysis of recombinase system was carried out during the next generation of Arabidopsis thaliana plants, produced by agrobacterium transformation method. For this purpose two types of DNA-constructions were used for establishing better variant. The histochemical analysis of the plants progeny T1 transformed by both construct types was described. As a result of our work, it was established that the amount of marker-free transformants was arising during every next transformation offspring independently of the used construct type. The new strategy provides a simple and rapid way to eliminate swelective and marker genes.
Key words: site-specific recombinase system Cre/loxP, marker genes excision.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2015
References
1. Puchta H. Marker-free transgenic plants. Plant Cell Tis. Org. Cult. 2003, V. 74, P. 123–134.
http://dx.doi.org/10.1023/A:1023934807184
2. Dale E. C., Ow D. W. Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA. 1991, 88 (23), 10558–10562
http://dx.doi.org/10.1073/pnas.88.23.10558
3. Gidoni D., Bar M., Leshem B., Gilboa N., Mett A., Feiler J. Embryonal recombination and germline inheritance of recombined Frt loci mediated by constitutively expressed Flp in tobacco. Euphytica. 2001, V. 121, P. 145–156.
http://dx.doi.org/10.1023/A:1012081125631
4. Ebinuma H., Komamine A. MAT (Multi-Auto-Trans formation) Vector System. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free ransgenic plants. In Vitro Cell. Dev. Biol. Plant. 2001, V. 37, pp 103–111.
http://dx.doi.org/10.1007/s11627-001-0021-2
5. Kittiwongwattana C., Lutz K., Clark M., Maliga P. Plastid marker gene excision by the phiC31 phage site-specific recombinase. Plant Mol. Biol. 2007, V. 64, P. 137?143.
http://dx.doi.org/10.1007/s11103-007-9140-4
6. Rubtsova M., Kempe K., Gils A., Ismagul A., Weyen J., Gils M. Expression of active Streptomyces phage phiC31 integrase in transgenic wheat plants. Plant Cell Rep. 2008, V. 27, P. 1821–1831.
http://dx.doi.org/10.1007/s00299-008-0604-z
7. Maeser S., Kahmann R. The Gin recombinase of phase Mu can catalyse site-specific recombination in plant protoplasts. Mol. Gen. Genet. 1991, V. 230, P. 170–176.
http://dx.doi.org/10.1007/BF00290665
8. Moon H. S., Eda S., Saxton A. M., Ow D., Stewart C. N. Jr. An efficient and rapid transgenic pollen screening and detection method using a flow cytometry. Biotechnol. J. 2011, V. 6, P. 118–120.
http://dx.doi.org/10.1002/biot.201000258
9. Thomson J. G., Yau Y.-Y., Blanvillain R., Chinquy D., Thilmony R., Ow D. W. ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transg. Res. 2009, V. 18, P. 237–248.
http://dx.doi.org/10.1007/s11248-008-9213-4
10. Grindley N. D. F., Whiteson K. L., Rice P. A. Mechanisms of site-specific recombination. Annu. Rev. Biochem. 2006, V. 75, P. 567–605.
http://dx.doi.org/10.1146/annurev.biochem.73.011303.073908
11. Wang Y., Yau Y.-Y., Perkins-Balding D., Thompson J. G. Recombinase technology: applications and possibilities. Plant. Cell. Rep. 2011, V. 30, P. 267–285.
http://dx.doi.org/10.1007/s00299-010-0938-1
12. Van Duyne G. D. A structural view of cre-loxp site-specific recombination. Annu. Rev. Biophys. Biomol. Struct. 2001, V. 30, P. 87–104.
http://dx.doi.org/10.1146/annurev.biophys.30.1.87
13. Kopertekh L., Schiemann J. Elimination of Transgenic Sequences in Plant by Cre Gene Expression. Transgenic Plants - Advances and Limitations, ISBN 978-953-51-0181-9, InTech. 2012, P. 449–468.
14. Zuo J., Niu Q.-W., M?ller S. G., Chua N.-H. Chemical-regulated, site-specific DNA excision in transgenic plants. Nat. Biotechnol. 2001, V. 19, P. 157–161.
http://dx.doi.org/10.1038/84428
15. Zhang Y., Li H., Quyang B., Lu Y., Ye Z. Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol. Lett. 2006, V. 28, P. 1247–1253.
http://dx.doi.org/10.1007/s10529-006-9081-z
16. Zhang W., Subbarao S., Addae P., Shen A., Armstrong C., Peschke V., Gilbertson L. Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor. Appl. Genet. 2003, 107 (7), 1157–1168.
http://dx.doi.org/10.1007/s00122-003-1368-z
17. Wang Y., Chen B., Hu Y., Li J., Lin Z. Inducible excision of selectable marker gene from transgenic plants by the Cre/lox site-specific recombination system. Transg. Res. 2005, 14 (5), 605–614.
http://dx.doi.org/10.1007/s11248-005-0884-9
18. Mlynarova L., Conner A. J., Nap J.-P. Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotech. J. 2006, 4 (4), 445–452.
http://dx.doi.org/10.1111/j.1467-7652.2006.00194.x
19. Kopertekh L., Schulze K., Frolov A., Strack D., Broer I., Schiemann J. Cre-mediated seed-specific transgene excision in tobacco. Plant Mol. Biol. 2010, 72 (6), 597–605.
http://dx.doi.org/10.1007/s11103-009-9595-6
20. Sekan A. S., Isaenkow S. V. Development of the DNA-constuktions with site-specific recombinase system CRE/loxP under control a 35s promotor for the obtaining marker-free Arabidopsis thaliana transformants. Avaliable at http://nd.nubip.edu.ua/2014_5/3.pdf (accessed, September, 2014).
21. Sekan A. S., Isaenkow S. V. One step obtaining of the marker-free Arabidopsis thaliana transformants by the DNA-construction with site-specific recombnase construction Cre/loxP under control a 35S promotor. NASU Rep. 2014, V. 3, P. 158–163.
22. Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Phys. Plantar. 1962, 15 (3), 473–497.
http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x
23. Jefferson R. A. Assaying chimeric genes in plants: the gus gene fusion system Plant. Mol. Biol. Rep. 1987, V. 5, P. 387–405.
http://dx.doi.org/10.1007/BF02667740
24. Kopertekh L., Schulze K., Frolov A. Cremediated seed-specific transgene excision in tobacco. Plant Mol. Biol. 2010, V. 72, P. 597–605.
http://dx.doi.org/10.1007/s11103-009-9595-6
25. Liu H. K., Yang C., Wei Z. W. Heat shock-regulated site-specific excision of extraneous DNA in transgenic plants. Plant Sci. 2005, V. 168, P. 997–1003.
http://dx.doi.org/10.1016/j.plantsci.2004.11.021
26. Kim H.-B., Cho J.-I., Ryoo N. Development of a simple and efficient system for excision selectable markers in Arabidopsis using a minimal promoter: Cre fusion construct. Mol. Cells. 2012, 33 (1), 61–69.
http://dx.doi.org/10.1007/s10059-012-2212-6
27. Matzke M. A., Matzke A. J. M. How and why do plants inactivate homologоus (trans) genes? Plant Physiol. 1995, 107 (3), 679–685.