ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta
V. 7, No 5, 2014
"Biotechnologia Acta" v. 7, no 5, 2014
https://doi.org/10.15407/biotech7.05.009
Р. 9-26, Bibliography 125, Ukrainian.
Universal Decimal classification: 759.873.088.5:661.185
BIOSYNTHESIS OF SURFACTANTS ON INDUSTRIAL WASTE
Pirog T. P., Sofilkanich A. P., Konon A. D., Grytsenko N. A.
National University of Food Technologies, Kyiv, Ukraine
The literature and own experimental data on the synthesis of microbial surfactants of different chemical nature (rhamnolipids, sophorolipids, manozylerythritollipids, lipopeptides) at various waste (vegetable oil and fat, sugar, dairy industry, agriculture, forestry, biodiesel, as well as waste — fried vegetable oils) are presented. Most suitable substrates for the synthesis of microbial surfactants are oil containing waste that, unlike, for example, lignocellulose, whey, technical glycerol do not require pre-treatment and purification.
Replacing traditional substrates for the biosynthesis of surfactant with industrial waste will help to reduce the cost of technology by several times, dispose of unwanted waste, solve the problem of storage or disposal of large amounts of waste from the food industry, agricultural sector and companies that produce biodiesel, which spent large amount of energy and money for such needs
Key words: microbial surfactants, industrial waste.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. M?ller M. M., K?gler J. H., Henkel M., Gerlitzki M., H?rmann B., P?hnlein M., Syldatk C., Hausmann R. Rhamnolipids — Next generation surfactants? J. Biotechnol. 2012, 162(4), 366–380.
https://doi.org/10.1016/j.jbiotec.2012.05.022
2. Mulligan C. N. Recent advances in the environmental applications of biosurfactants. Cur. Opin. Coll. Inter. Sci. 2009, 14(5), 372–378.
https://doi.org/10.1016/j.cocis.2009.06.005
3. Banat I., Franzetti A., Gandolfi I., Bestetti G., Martinotti M., Fracchia L., Smyth T., Marchant R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 2010, 87(2), 427–444.
https://doi.org/ 10.1007/s00253-010-2589-0
4. Nitschke M., Costa S. G., Contiero J. Rhamnolipids and PHAs: Recent reports on Pseudomonasderived molecules of increasing industrial interest. Proc. Biochem. 2011, 46(3), 621–630.
https://doi.org/ 10.1016/j.procbio.2010.12.012
5. Henkel M., M?ller M. M., K?gler J. H., Lovaglio R. B., Contiero J., Syldatk C., Hausmann R. Rhamnolipids as biosurfactants from renewable resources: Concepts for nextgeneration rhamnolipid production. Proc. Biochem. 2012, 47(8), 1207–1219
. https://doi.org/ 10.1016/j.procbio.2012.04.018
6. Syldatk C., Hausmann R. Microbial biosurfactants. Eur. J. Lipid Sci. Technol. 2010, 112(6), 615–616.
https://doi.org/10.1002/ejlt.201000294
7. Costa S. G., Nitschke M., L?pine F., D?ziel E., Contiero J. Structure, properties and applications of rhamnolipids produced by Pseudomonas aeruginosa L21 from cassava wastewater. Proc. Biochem. 2010, 45(9), 1511–1516.
https://doi.org/10.1016/j.procbio.2010.05.033
8. Makkar R. S., Cameotra S. S., Banat I. M. Advances in utilization of renewable substrates for biosurfactant production. AMB Express. 2011, 1:5.
a href="https://doi.org/10.1186/2191085515." t" r">&"bsp;https://doi.org/10.1186/2191085515.
9. Van Bogaert I. N. A., Zhang J., Soetaert W. Microbial synthesis of sophorolipids. Proc. Biochem. 2011, 46(4), 821–833.
https://doi.org/10.1016/j.procbio.2011.01.010
10. Octave S., Thomas D. Biorefinery: Toward an industrial metabolism. Biochimie. 2009, 91(6), 659–664.
https://doi.org/10.1016/j.biochi.2009.03.015
11. Lomascolo A., UzanBoukhris E., Sigoillot J.C., Fine F. Rapeseed and sunflower meal: a review on biotechnology status and challenges. Appl. Microbiol. Biotechnol. 2012, 95(5), 1105–1114.
https://doi.org/10.1007/s00253-012-4250-6
12. Willke T., Vorlop K. D. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 2004, 66(2), 132–142.
https://doi.org/10.1007/s00253-004-1733-0
13. Makkar R. S., Cameotra S. S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol. 2002, 58(4), 428–434.
https://doi.org/10.1007/s00253-001-0924-1
14. Thavasi R., Jayalakshmi S., Balasubramanian T., Banat I. M. Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake. Lett. Appl. Microbiol. 2007, 45(6), 686–691.
https://doi.org/10.1111/j.1472-765X.2007.02256.x
15. Shumkova E. S., Solyanikova I. P., Plotnikova E. G., Golovleva L. A. Phenol degradation by Rhodococcus opacus strain 1G. Prikladnaia biochimiia i microbiolohiia. 2009, 45(1), 43–49. (In Russian).
16. Homenko L. A., Nogina T. M., Pidgors’kij V. S. The ability of strains of Rhodococcus erythropolis utilization of mineral motor oils and their resistance to certain stressors. Naukovi zapysky. Biolohiia ta ekolohiia. 2005, 43, 38–42. (In Ukrainian).
17. Adav S. S., Chen M. Y., Lee D. J., Ren N. Q. Degradation of phenol by Acinetobacter strain isolated from aerobic granules. Chemosphere. 2007, 67(8), 1566–1572.
https://doi.org/10.1016/j.chemosphere.2006.11.067
18. Cao B., Nagarajan K., Loh K. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl. Microbiol. Biotechnol. 2009, 85(2), P. 207–228.
https://doi.org/10.1007/s00253-009-2192-4
19. Ren H. S., Wang Y., Zhao H. B., Cai B. L. Isolation and identification of phenoldegrading strains and the application in biotreatment of phenolcontaining wastewater. Huan Jing Ke Xue. 2008, 29(2), P.482–487.
20. Wang Y., Tian Y., Han B., Zhao H. B., Bi J. N., Cai B. L. Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J. Environ. Sci. 2007, 19(2), 222–225.
https://doi.org/10.1016/S1001-0742(07)60036-9
21. Rocha L. L., de Aguiar Cordeiro A. R., Cavalcante R. M., do Nascimento R. F., Martins S. C., Santaella S. T., Melo V. M. Isolation and characterization of phenol degrading yeasts from an oil refinery wastewater in Brazil. Mycopathologia. 2007, 164(4), 183–188.
https://doi.org/10.1007/s11046-007-9043-6
22. Li X., Li A., Liu C., Yang J., Ma F., Hou N., Xu Y., Ren N. Characterization of the extracellular biodemulsifier of Bacillus mojavensis XH1 and the enhancement of demulsifying efficiency by optimization of the production medium composition. Proc. Biochem. 2012, 47(4), 626–634.
https://doi.org/10.1016/j.procbio.2012.01.004
23. Dumont M. J., Narine S. S. Soapstock and deodorizer distillates from North American vegetable oils: Review on their characterization, extraction and utilization. Food Res. International. 2007, 40(8), 957–974.
https://doi.org/10.1016/j.foodres.2007.06.006
24. Oliveira F. J. S., Vazquez L., de Campos N. P., de Fran?a F. P. Production of rhamnolipids by a Pseudomonas alcaligenes strain. Proc. Biochem. 2009, 44(4), 383–389.
https://doi.org/10.1016/j.procbio.2008.11.014
25. Mercade M. E., Manresa M. A., Robert M., Espuny M. J., de Andres C., Guinea J. Olive oil mill effluent (OOME). New substrate for biosurfactant production. Bioresour. Technol. 1993, 43(1), 1–6.
https://doi.org/10.1016/0960-8524(93)90074-L
26. Kitamoto D., Yanagishita H., Shinbo T., Nakane T., Kamisawa C., Nakahara T. Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J. Biotechnol. 1993, 29(1), 91–96.
https://doi.org/10.1016/0168-1656(93)90042-L
27. Casas J., GarciaOchoa F. Sophorolipid production by Candida bombicola medium composition and culture methods. J. Biosci. Bioeng. 1999, 88(5), 488–494.
https://doi.org/10.1016/S1389-1723(00)87664-1
28. Rau U., Hammen S., Heckmann R., Wray V., Lang S. Sophorolipids: a source for novel compounds. Ind. Crops Prod. 2001, 13(2), 85–92.
https://doi.org/10.1016/S0926-6690(00)00055-8
29. Vollbrecht E., Rau U., Lang S. Microbial conversion of vegetable oils into surfaceactive di, tri, and tetrasaccharide lipids (biosurfactants) by the bacterial strain Tsukamurella spec. Lipid/Fett. 1999, 101(10), 389–394.
30. Trummler K., Effenberger F., Syldatk C. An integrated microbial/enzymatic process for production of rhamnolipids and L(+)rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874. Eur. J. Lipid Sci. Technol. 2003, 105(10), 563–571.
https://doi.org/ 10.1002/ejlt.200300816
31. Thaniyavarn J., Chongchin A., Wanitsuksombut N., Thaniyavarn S., Pinphanichakarn P., Leepipatpiboon N., Morikawa M., Kanaya S. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. J. Gen. Appl. Microbiol. 2006, 52(4), 215–222.
https://doi.org/ 10.2323/jgam.52.215
32. Pornsunthorntawee O., Arttaweeporn N., Paisanjit S., Somboonthanate P., Abe M., Rujiravanit R., Chavadej S. Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactantenhanced oil recovery. Biochem. Eng. J. 2008, 42(2), 172–179.
https://doi.org/10.1016/j.bej.2008.06.016
33. Abouseoud M., Maachi R., Amrane A., Boudergua S., Nabi A. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination. 2008, 223(1–3), 143–151.
https://doi.org/10.1016/j.desal.2007.01.198
34. Monteiro A. S., Coutinho J. O., J?nior A. C., Rosa C. A., Siqueira E. P., Santos V. L. Characterization of new biosurfactant produced by Trichosporon montevideense CLOA 72 isolated from dairy industry effluents. J. Basic. Microbiol. 2009, 49(6), 553–563.
https://doi.org/ 10.1002/jobm.200900089
35. Daverey A., Pakshirajan K. Production, characterization, and properties of sophorolipids from the yeast Candida bombicola using a lowcost fermentative medium. Appl. Biochem. Biotechnol. 2009, 158(3), 663–674.
https://doi.org/10.1007/s12010-008-8449-z
36. Daverey A., Pakshirajan K. Kinetics of growth and enhanced sophorolipids production by Candida bombicola using a lowcost fermentative medium. Appl. Biochem. Biotechnol. 2010, 160(7), 2090–2101.
https://doi.org/10.1007/s12010-009-8797-3
37. M?ller M., H?rmann B., Syldatk C., Hausmann R. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl. Biochem. Biotechnol. 2010, 87(1), 167–174.
https://doi.org/10.1007/s00253-010-2513-7
38. Abalos A., Pinazo A., Infante M. R., Casals M., Garc?a F., Manresa A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 2001, 17(5), 1367–1371.
https://doi.org/ 10.1021/la0011735
39. Benincasa M., Contiero J., Manresa M. A., Moraes I. O. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. J. Food Eng. 2002, 54(4), 283–288.
https://doi.org/10.1016/S0260-8774(01)00214-X
40. Nitschke M., Costa S. G., Haddad R., Goncalves L. A., Eberlin M. N., Contiero J. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol. Prog. 2005, 21(5), 1562–1566.
https://doi.org/ 10.1021/bp050198x
41. Nitschke M., Costa S. G., Contiero J. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Appl. Biochem. Biotechnol. 2010, 160(7), 2066–2074.
https://doi.org//s12010-009-8707-8
42. Deak N., Johnson L. Functional properties of protein ingredients prepared from highsucrose/lowstachyose soybeans. J. Am. Oil Chem. Soc. (JAOCS). 2006, 83(9), 811–818.
https://doi.org/10.1007/s11746-006-5019-9
43. Solaiman D. K., Ashby R. D., Nu?ez A., Foglia T. A. Production of sophorolipids by Candida bombicola grown on soy molasses as substrate. Biotechnol. Lett. 2004, 26(15),1241–1245.
https://doi.org/10.1023/B:BILE.0000036605.80577.30
44. Solaiman D., Ashby R., Zerkowski J., Foglia T. Simplified soy molassesbased medium for reducedcost production of sophorolipids by Candida bombicola. Biotechnol. Lett. 2007, 29(9), 1341–1347.
https://doi.org/10.1007/s10529-007-9407-5
45. Thavasi R., Jayalakshmi S., Balasubramanian T., Banat I. Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J. Microbiol. Biotechnol. 2008, 24(7), 917–925.
https://doi.org/10.1007/s11274-007-9609-y
46. Thavasi R., Jayalakshmi S., Banat I. M. Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour. Technol. 2011, 102(3), 3366–3372.
https://doi.org/10.1016/j.biortech.2010.11.071
47. Jadhav M., Kagalkar A., Jadhav S., Govind war S. Isolation, characterization, and antifungal application of a biosurfactant produced by Enterobacter sp. MS16. Eur. J. Lipid Sci. Technol. 2011, 113(11), 1347–1356.
https://doi.org/10.1002/ejlt.201100023
48. Shah V., Jurjevic M., Badia D. Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnol. Prog. 2007, 23(2), 512–515
https://doi.org/ 10.1021/bp0602909
49. Liu J., Peng K., Huang X., Lu L., Cheng H., Yang D., Zhou Q., Deng H. Application of waste frying oils in the biosynthesis of biodemulsifier by a demulsifying strain Alcaligenes sp. SXJ1. J. Environ. Sci. (China). 2011, 23(6), 1020–1026.
https://doi.org/ 10.1016/S1001-0742(10)60508-6
50. Xia W. J., Luo Z. B., Dong H. P., Yu L., Cui Q. F., Bi Y. Q. Synthesis, characterization, and oil recovery application of biosurfactant produced by indigenous Pseudomonas aeruginosa WJ1 using waste vegetable oils. Appl. Biochem. Biotechnol. 2012, 166(5), 1148–1166.
https://doi.org/10.1007/s12010-011-9501-y
51. Zhang Q., Saleh A. S., Chen J., Shen Q. Chemical alterations taken place during deepfat frying based on certain reaction products: A review. Chem. Phys. Lipids. 2012, 165(6), 662–681.
https://doi.org/10.1016/j.chemphyslip.2012.07.002
52. Haba E., Espuny M. J., Busquets M., Manresa A. Screening and production of rhamnolipids Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J. Appl. Microbiol. 2000, 88(3), 379–387.
https://doi.org/10.1046/j.1365-2672.2000.00961.x
53. Raza Z. A., Khan M. S., Khalid M. Z., Rehman A. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Biotechnol. Lett. 2006, 28(20), 1623–1631.
https://doi.org/10.1007/s10529-006-9134-3
54. Zhu Y., Gan J., Zhang G., Yao B., Zhu W., Meng Q. Reuse of waste frying oil for production of rhamnolipids using Pseudomonas aeruginosa zju. u1M. J. Zhejiang Univ. Sci. A. 2007, 8(9), 1514–1520.
https://doi.org/10.1631/jzus.2007.A1514
55. Sadouk Z., Hacene H., Tazerouti A. Biosurfactants production from low cost substrate and degradation of diesel oil by a Rhodococcus strain. Oil Gas Sci. Technol. 2008, 63(6), 747–753.
https://doi.org/10.2516/ogst:2008037
56. De Lima C., Ribeiro E., S?rvulo E., Resende M., Cardoso V. Biosurfactant production by Pseudomonas aeruginosa grown in residual soybean oil. Appl. Biochem. Biotechnol. 2009, 152(1), 156–168.
https://doi.org/10.1007/s12010-008-8188-1
57. Liu J., Huang X. F., Lu L. J., Xu J. C., Wen Y., Yang D. H., Zhou Q. Comparison between waste frying oil and paraffin as carbon source in the production of biodemulsifier by Dietzia sp. SJS1. Bioresour. Technol. 2009, 100(24), 6481–6487.
https://doi.org/10.1016/j.biortech.2009.07.006
58. Wadekar S. D., Kale S. B., Lali A. M., Bhowmick D. N., Pratap A. P. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source. Prep. Biochem. Biotechnol. 2012, 42(4), 249–266.
https://doi.org/10.1080/10826068.2011.603000
59. Pirog T. P., Shevchuk T. A., Voloshina I. N., Grechirchak N. N. Use of clayditeimmobilized oiloxidizing microbial cells for purification of water from oil. Appl. Biochem. Microbiol. 2005, 41(1), 51–55.
https://doi.org/10.1007/s10438-005-0010-z
60. Pirog T. P., Antonyuk S. I., Karpenko Ye. V., Shevchuk T. A. The influence of conditions of Acinetobacter calcoaceticus K4 strain cultivation on surfaceactive substances synthesis. Appl. Biochem. Microbiol. 2009, 45(3), 272 — 278.
https://doi.org/10.1134/S0003683809030065
61. Pirog T. P., Gricenko N. A., Homiak D. I., Konon A. D., Antoniuk S. I. Optimization of synthesis of biosurfactants of Nocardia vaccinii K8 under bioconversion of biodiesel production waste. Mikrobiol. zh. 2011, 73(4), 15–23. (In Russian).
62. Pirog T. P., Ignatenko S. V. Scaling of the process of biosynthesis of surfactants by Rhodococcus erythropolis EK1 on hexadecane. Appl. Biochem. Microbiol. 2011, 47(4), 393–399.
https://doi.org/10.1134/S0003683811040120
63. Pidgorskii V. S., Iutinska G. O., Pirog T. P. Intensification of technologies microbial synthesis. Kyiv: Nauk. dumka. 2010, 327 p. (In Ukrainian).
64. Zulfiqar A. R., Muhammad S. K., Zafar M. K., Asma R. Production kinetics tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Biotechnol. Lett. 2006, 28(20), 1623–1631.
https://doi.org/10.1007/s10529-006-9134-3
65. Cha M., Lee N., Kim M., Kim M., Lee S. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresour. Technol. 2008, 99(7), 2192–2199.
https://doi.org/10.1016/j.biortech.2007.05.035
66. Abbasi H., Hamedi M. M., Lotfabad T. B., Zahiri H. S., Sharafi H., Masoomi F., MoosaviMovahedi A. A., Ortiz A., Amanlou M., Noghabi K. A. Biosurfactantproducing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical structural characteristics of isolated biosurfactant. J. Biosci. Bioeng. 2012, 113(2), 211–219.
https://doi.org/10.1016/j.jbiosc.2011.10.002
67. Sanket J., Chirag B., Sujata J., Sanjay Y., Anuradha N., Desai Anjana J. Biosurfactant production using molasses whey under thermophilic conditions. Bioresour. Technol. 2008, 99(1), 195–199.
https://doi.org/10.1016/j.biortech.2006.12.010
68. Daniel H. J., Otto R. T., Reuss M., Syldatk C. Sophorolipid production with high yields on whey concentrate rapeseed oil without consumption of lactose. Biotechnol. Lett. 1998, 20(8), 805–807.
https://doi.org/10.1023/B:BILE.0000015927.29348.1a
69. Daniel H. J., Reuss M., Syldatk C. Production of sophorolipids in high concentration from deproteinized whey rapeseed oil in a two stage fed batch process using Candida bombicola ATCC 22214 and Cryptococcus curvatus ATCC 20509. Biotechnol. Lett. 1998, 20(12), 1153–1156.
https://doi.org/10.1023/A:1005332605003
70. Daverey A., Pakshirajan K. Sophorolipids from Candida bombicola using mixed hydrophilic substrates: Production, purification and characterization. Colloids Surf. B. Biointerfaces. 2010, 79(1), 246–253.
https://doi.org/10.1016/j.colsurfb.2010.04.002
71. Dubey K., Juwarkar A. Distillery and curd whey wastes as viable alternative sources for biosurfactant production. J. Microbiol. Biotechnol. 2001, 17(1), 61–69.
https://doi.org/10.1023/A:1016606509385
72. Rodrigues L. R., Teixeira J. A., Oliveira R. Lowcost fermentative medium for biosurfactant production by probiotic bacteria. Biochemical. Eng. J. 2006, 32(3), 135–142.
https://doi.org/10.1016/j.bej.2006.09.012
73. Dubey K. V., Charde P. N., Meshram S. U., Shendre L. P., Dubey V. S., Juwarkar A. A. Surfaceactive potential of biosurfactants produced in curd whey by Pseudomonas aeruginosa strainPP2 and Kocuria turfanesis strainJ at extreme environmental conditions. Bioresour. Technol. 2012, V. 126, P. 368–374.
https://doi.org/10.1016/j.biortech.2012.05.024.
74. Maneerat S. Biosurfactants from marine microorganisms. Songklanakarin J. Sci. Technol. 2005, 27(6), 1263–1272.
75. Maneerat S. Production of biosurfactants using substrates from renewable resources. Songklanakarin J. Sci. Technol. 2005, 27(3), 675–683.
76. Ghurye G. L., Vipulanandan C., Willson R. C. A practical approach to biosurfactant production using nonaseptic fermentation of mixed cultures. Biotechnol. Bioeng. 1994, 44(5), 661–666.
https://doi.org/10.1002/bit.260440514
77. Makkar R. S., Cameotra S. S. Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J. Am. Oil Chem. Soc. (JACOS). 1997, 74(7), 887–889.
https://doi.org/10.1007/s11746-997-0233-7
78. Patel R., Desai A. Surfaceactive properties of rhamnolipids from Pseudomonas aeruginosa GS3. J. Basic Microbiol. 1997, 37(4), 281–286.
https://doi.org/10.1002/jobm.3620370407
79. Rashedi H., Assadi M. M., Bonakdarpour B., Jamshidi E. Environmental importance of rhamnolipid production from molasses as a carbon source. Int. J. Environ. Sci. Technol. 2005, 2(1), 59–62.
https://doi.org/ 10.1007/BF03325858
80. Raza Z. A., Khan M. S., Khalid Z. M. Physicochemical and surfaceactive properties of biosurfactant produced using molasses by a Pseudomonas aeruginosa mutant. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2007, 42(1), 73–80.
https://doi.org/10.1080/10934520601015784
81. Muthusamy K., Gopalakrishnan S., Ravi T. K., Sivachidambaram P. Biosurfactants: properties, commercial production and application. Curr. Sci. 2008, 94(6), 736–747.
82. AbdelMawgoud A. M., Aboulwafa M. M., Hassouna N. A. Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl. Biochem. Biotechnol. 2008, 150(3), 289–303.
https://doi.org/10.1007/s12010-008-8153-z
83. AbdelMawgoud A. M., Aboulwafa M. M., Hassouna N. A. Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl. Biochem. Biotechnol. 2008, 150(3), 305–325.
https://doi.org/10.1007/s12010-008-8155-x
84. Onbasli D., Aslim B. Biosurfactant production in sugar beet molasses by some Pseudomonas spp. J. Environ. Biol. 2009, 30(1), 161–163.
85. AlBahry S. N., AlWahaibi Y. M., Elshafie A. E., AlBemani A. S., Joshi S. J., AlMakhmari H. S., AlSulaimani H. S. Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int. Biodeterior. Biodegrad. 2013, V. 81, P. 141–146.
https://doi.org/10.1016/j.ibiod.2012.01.006
86. Saimmai A., Rukadee O., Onlamool T., Sobhon V., Maneerat S. Characterization and phylogenetic analysis of microbial surface active compoundproducing bacteria. Appl. Biochem. Biotechnol. 2012, 168(5), 1003–1018.
https://doi.org/10.1007/s12010-012-9836-z
87. Lin C.W., Wu C.H., Tran D.T., Shih M.C., Li W.H., Wu C.F. Mixed culture fermentation from lignocellulosic materials using thermophilic lignocellulosedegrading anaerobes. Proc. Biochem. 2011, 46(2), 489–493.
https://doi.org/10.1016/j.procbio.2010.09.024
88. Chandel A. K., Singh O. V. Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of “Biofuel”. Appl. Microbiol. Biotechnol. 2011, 89(5), 1289–1303.
https://doi.org/0.1007/s00253-010-3057-6
89. AbdelRahman M. A., Tashiro Y., Sonomoto K. Lactic acid production from lignocellulosederived sugars using lactic acid bacteria: overview and limits. J. Biotechnol. 2011, 156(4), 286–301.
https://doi.org/10.1016/j.jbiotec.2011.06.017
90. Taherzadeh M. J., Karimi K. Acidbased hydrolysis processes for ethanol from lignocellulosic materials: A review. BioRes. 2007, 2(3), 472–499.
91. Moldes A. B., Alonso J. L., Parajo J. C. Strategies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation. J. Chem. Technol. Biotechnol. 2001, 76(3), 279–284.
https://doi.org/ 10.1002/jsfa.2004
92. Bustos G., Moldes A. B., Cruz J. M., Dom?nguez J. M. Production of lactic acid from vinetrimming wastes and viticulture lees using a simultaneous saccharification fermentation method. J. Sci. Food Agricul. 2005, 85(3), 466–472.
https://doi.org/10.1002/jsfa.2004
93. Sreenath H. K., Moldes A. B., Koegel R. G., Straub R. J. Lactic acid production from agriculture residues. Biotechnol. Lett. 2001, 23(1), 179–184.
https://doi.org/10.1023/A:1005651117831
94. Rodrigues L. R., Teixeira J. A., van der Mei H. C., Oliveira R. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf. B Biointerfaces. 2006, 49(1), 79–86.
https://doi.org/10.1016/j.colsurfb.2006.03.003
95. PortillaRivera O. M., Moldes A. B., Torrado A. M., Dom?nguez J. M. Biosurfactants from grape marc: Stability study. J. Biotechnol. 2007, 131(2) (Suppl). https://doi.org/10.1016/j.jbiotec.2007.07.837.
96. PortillaRivera O. M., Moldes A. B., Torrado A. M., Dom?nguez J. M. Lactic acid and biosurfactants production from hydrolyzed distilled grape marc. Proc. Biochem. 2007, 42(6), 1010–1020.
https://doi.org/10.1016/j.procbio.2007.03.011
97. PortillaRivera O., Torrado A., Dominguez J. M., Moldes A. B. Stability and emulsifying capacity of biosurfactants obtained from lignocellulosic sources using Lactobacillus pentosus. J. Agric. Food Chem. 2008, 56(17), 8074–8080.
https://doi.org//jf801428x
98. PortillaRivera O. M., Rivas B., Torrado A., Moldes A. B., Dom?nguez J. M. Revalorisation of vine trimming wastes using Lactobacillus acidophilus and Debaryomyces hansenii. J. Sci. Food Agric. 2008, 88(13), 2298–2308.
https://doi.org/10.1002/jsfa.3351
99. Slivinski C. T., Mallmann E., de Ara?jo J. M., Mitchell D. A. Krieger N. Production of surfactin by Bacillus pumilus UFPEDA 448 in solidstate fermentation using a medium based on okara with sugarcane bagasse as a bulking agent. Proc. Biochem. 2012, 47(12), 1848–1856.
https://doi.org/10.1016/j.procbio.2012.06.014
100. Fox S. L., Bala G. A. Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates. Bioresour. Technol. 2000, 75(3), 235–240.
https://doi.org/10.1016/S0960-8524(00)00059-6
101. Thompson D. N., Fox S. L., Bala G. A. Biosurfactants from potato process effluents. Appl. Biochem. Biotechnol. 2000, 84–86(1–9), 917–930.
102. Nitschke M., Pastore G. Cassava flour wastewater as a substrate for biosurfactant production. Appl. Biochem. Biotechnol. 2003, 106(1–3), 295–302.
https://doi.org/10.1385/ABAB:106:1-3:295
103. Nitschke M., Pastore G. M. Biosurfactant production by Bacillus subtilis using cassavaprocessing effluent. Appl. Biochem. Biotechnol. 2004, 112(3), 163–172.
https://doi.org/10.1385/ABAB:112:3:163
104. Nitschke M., Pastore G. M. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour. Technol. 2006, 97(2), 336–341.
https://doi.org/10.1016/j.biortech.2005.02.044
105. Barros F., Ponezi A., Pastore G. Production of biosurfactant by Bacillus subtilis LB5a on a pilot scale using cassava wastewater as substrate. J. Microbiol. Biotechnol. 2008, 35(9), 1071–1078.
https://doi.org/10.1007/s10295-008-0385-y
106. Das K., Mukherjee A. K. Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: some industrial applications of biosurfactants. Proc. Biochem. 2007, 42(8), 1191–1199.
https://doi.org/10.1016/j.procbio.2007.05.011
107. Rivaldi J. D., Sarrouh B. F., Branco R. F., de Mancilha I. M., da Silva S. S. Biotechnological utilization of biodieselderived glycerol for the production of ribonucleotides and microbial biomass. Appl. Biochem. Biotechnol. 2012, 167(7), 2054–2067.
https://doi.org/10.1007/s12010-012-9749-x
108. Papanikolaou S., Fakas S., Fick M., Chevalot I., GaliotouPanayotou M., Komaitis M., Marc I., Aggelis G. Biotechnological valorisation of raw glycerol discharged after biodiesel (fatty acid methyl esters) manufacturing process: Production of 1,3propanediol, citric acid and single cell oil. Biomass Bioenergy. 2008, 32(1), 60–71.
https://doi.org/10.1016/j.biombioe.2007.06.007
109. Makri A., Fakas S., Aggelis G. Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour. Technol. 2010, 101(7), 2351–2358.
https://doi.org/10.1016/j.biortech.2009.11.024
110. AsadurRehman, Saman W. R. G., Nomura N., Sato S., Matsumura M. Pretreatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1,3propanediol production by Clostridium butyricum. J. Chem. Technol. Biotechnol. 2008, 83(7), 1072–1080.
https://doi.org/10.1002/jctb.1917
111. Moon C., Ahn J., Kim S. W., Sang B., Um Y. Effect of biodieselderived raw glycerol on 1,3propanediol production by different microorganisms. Appl. Biochem. Biotechnol. 2010, 161(1–8), 502–510.
112. Zhang A., Yang S. T. Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Proc. Biochem. 2009, 44(12), 1346–1351.
https://doi.org/ 10.1016/j.procbio.2009.07.013
113. Yu K. O., Kim S. W., Han S. O. Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate. J. Bacteriol. 2010, 150(2), 209–214.
v10.1016/j.jbiotec.2010.09.932
114. Da Silva G. P., Mack M., Contiero J. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 2009, 27(1), 30–39.
https://doi.org/ 10.1016/j.biotechadv.2008.07.006
115. Cavalheiro J. M. B. T., de Almeida M. C. M. D., Grandfils C., da Fonseca M. M. R. Poly(3hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Proc. Biochem. 2009, 44(5), 509–515.
https://doi.org/10.1016/j.procbio.2009.01.008
116. Silva S. N., Farias C. B., Rufino R. D., Luna J. M., Sarubbo L. A. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf. B. Biointerfaces. 2010, 79(1), 174–183.
https://doi.org/10.1016/j.colsurfb.2010.03.050
117. Morita T., Konishi M., Fukuoka T., Imura T., Kitamoto D. Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317(T). J. Biosci. Bioeng. 2007, 104(1), 78–81.
https://doi.org/10.1263/jbb.104.78
118. Yazdani S. S., Gonzalez R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 2007, 18(3), 213–219.
https://doi.org/ 10.1016/j.copbio.2007.05.002
119. De Sousa J. R., Correia J. A., de Almeida J. G. L., Rodrigues S., Pessoa O. D. L., Melo V. M. M., Gon?alves L. R. B. Evaluation of a coproduct of biodiesel production as carbon source in the production of biosurfactant by P. aeruginosa MSIC02. Proc. Biochem. 2011, 46(9), 1831–1839.
https://doi.org/10.1016/j.procbio.2011.06.016
120. Zhang G. L., Wu Y. T., Qian X. P., Meng Q. Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. J. Zhejiang. Univ. Sci. 2005, 6(8), 725–730.
https://doi.org/10.1631/jzus.2005.B0725
121. Monteiro S. A., Sassaki G. L., de Souza L. M., Meira J. A., de Ara?jo J. M., Mitchell D. A., Ramos L. P., Krieger N. Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem. Phys. Lipids. 2007, 147(1), 1–13.
https://doi.org/ 10.1016/j.chemphyslip.2007.02.001
122. Das P., Mukherjee S., Sen R. Substrate dependent production of extracellular biosurfactant by a marine bacterium. Bioresour. Technol. 2009, 100(2), 1015–1019.
https://doi.org/10.1016/j.biortech.2008.07.015
123. Liu Y., Koh C. M. J., Ji L. Bioconversion of crude glycerol to glycolipids in Ustilago maydis. Bioresour Technol. 2011, 102(4), 3927–3933.
https://doi.org/10.1016/j.biortech.2010.11.115
124. Posada J. A., Cardona C. A., Gonzalez R. Analysis of the production process of optically pure Dlactic acid from raw glycerol using engineered Escherichia coli strains. Appl. Biochem. Biotechnol. 2012, 166(3), Р. 680–699.
125. Louhasakul Y., Cheirsilp B. Industrial waste utilization for lowcost production of raw material oil through microbial fermentation. Appl. Biochem. Biotechnol. 2013, 169(1), 110–122.