Select your language

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

 6 2013

"Biotechnologia Acta" v. 6, no 6, 2013
Р. 28-44, Bibliography 71, Ukrainian.
Universal Decimal classification: 579.222:577.114


T. P. Pirog, M. O. Shulyakova, T. A. Shevchuk

National University of Food Technologies, Kyiv, Ukraine

The modern literature and own experimental data on the use of substrates’ mixtures for intensification of microbial synthesis technologies of practically valuable fermentation products (ethanol, lactic acid, butanediol), primary (amino acids, n-hydroxybenzoate, triglycerides) and secondary (lovastatin, surfactants) metabolites as well as for intensification of biodegradation of aromatic xenobiotics (benzene, cresols, phenols, toluene) and pesticides (dimethoate) are  presented.

Special attention is paid on the molecular mechanisms that were established in recent years and underlying the phenomenon catabolic repression in Gram-positive (Bacillus subtilis) and Gram-negative (Pseudomonas, Escherichia coli) bacteria and yeast Saccharomyces cerevisiae, and on the use of these data to develop technologies for utilization of plant biomass to produce industrially important metabolites.

The survival strategies of heterotrophic microorganisms in natural oligotrophic environments are considered, including the simultaneous use of multiple substrates, allowing improved kinetic characteristics that give them a competitive advantage, also provided significant metabolic/physiological flexibility.

The own experimental data on the use of mixtures of growth substrates for the intensification of surfactants’ synthesis of Rhodococcus erythropolis IMV Ac-5017 and Acinetobacter calcoaceticus IMV B-7241 are summarized. The dependence of the synthesis of surfactants in a mixture of energy excess (hexadecane) and energy deficient (glycerol, ethanol) substrates on the way of inoculum preparation, concentration of mono-substrates in the mixture, and their molar ratio were determined.

Key words: mixed substrates, catabolic repression, intensification of biosynthesis,  biodegradation of xenobiotics, utilization of plant biomass, surfactants.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013


1. Pirog T. P., Kovalenko M. A., Using a mixture of microorganisms growth and not growth substrates. Mikrobiol. zhurn. 2004, 66(6), 80?100. (In Ukrainian).

2. Rojo F. Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol. Rev. 2010, 34(5), 658–684.

3. Sasaki M., Jojima T., Kawaguchi H. Engineering of pentose transport in Coryne­bac­terium glutamicum to improve simultaneous utilization of mixed sugars. Appl. Microbiol. Biotechnol. 2009, 85(1), 105–115.

4. Ji X. J., Nie Z. K., Huang H. Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose-xylose mixtures. Appl. Microbiol. Biotechnol. 2011, 89(4), 1119–1125.

5. Kim J. H., Block D. E., Mills D. A. Simulta­neous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 2010, 88(5), 1077–1085.

6. Jojima T., Omumasaba C. A., Inui M., Yukawa H. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl. Microbiol. Biotechnol. 2010, 85(3), 471–480.

7. Egli T. How to live at very low substrate concentration. Water Res. 2010, 44(17), 4826–4837.

8. Zhou Y. Y., Chen D. Z., Zhu R. Y., Chen J. M. Substrate interactions during the biodegradation of BTEX and THF mixtures by Pseudomonas oleovorans DT4. Bioresour. Technol. 2011, 102(12), 6644–6649.

9. Chen J. M., Zhou Y. Y., Chen D. Z., Jin X. J. A newly isolated strain capable of effectively degrading tetrahydrofuran and its performance in a continuous flow system. Bioresour. Technol. 2010, 101(16), 6461–6467.

10. Alexieva Z., Gerginova M., Manasiev J. Phenol and cresol mixture degradation by
the yeast Trichosporon cutaneum. Ind. Microbiol. Biotechnol. 2008, 35(11), 1297–1301.

11. Alexieva Z., Gerginova M., Zlateva P., Peneva N. Comparison of growth kinetics and phenol metabolizing enzymes of Trichosporon cutaneum R57 and mutants with modified degradation abilities. Enzyme Microb. Technol. 2004, 3(4), 242–247.

12. Zlateva P., Gerginova M., Manasiev Y. Kinetic parameters determination of the phenolic derivatives assimilation by Trichosporon cutaneum R57. Biotechnol. Biotechnol. Equip. 2005, 19(1), 93–97.

13. Del Castillo T., Ramos J. L. Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways. J. Bacteriol. 2007, 189(18), 6602–1660.

14. Mouttaki H., Nanny M. A., McInerney M. J. Use of benzoate as an electron acceptor by Syntrophus aciditrophicus grown in pure culture with crotonate. Environ. Microbiol. 2008, 10(12), 3265–3274.

15. Liang Y., Zeng F., Qiu G. Co-metabolic degradation of dimethoate by Raoultella sp. X1. Biodegradation. 2009, 20(3), 363–373.

16. Kim J. H., Block D. E., Shoemaker S. P., Mills D. A. Atypical ethanol production by carbon catabolite derepressed lactobacilli. Bioresour Technol. 2010, 101(22), 8790–8797.

17. Kumar S., Gummadi S. N. Metabolism of glucose and xylose as single and mixed feed in Debaryomyces nepalensis NCYC 3413: production of industrially important metabolites. Appl. Microbiol. Biotechnol. 2011,?89(5), 1405–1415.

18. Ji X. J., Huang H., Du J. Development of an industrial medium for economical 2, 3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca. Bioresour. Technol. 2009,?100(21), 5214–5218.

19. Stephanopoulos G. Challenges in engineering microbes forbiofuels production. Science. 2007, 315(5813), 801–804.

20. Bera A. K., Sedlak M., Khan A., Ho N. W. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl. Microbiol. Biotechnol. 2010, 87(5), 1803–1811.

21. Hanly T. J., Henson M. A. Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol. Bioeng. 2011, 108(2), 376–385.

22. Saitoh S., Hasunuma T., Tanaka T., Kondo A. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2. Appl. Microbiol. Biotechnol. 2010, 87(5), 1975–1982.

23. Kim S. R., Lee K. S., Choi J. H. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism. J. Biotechnol. 2010, 150(3), 404–407.

24. Nakamura N., Yamada R., Katahira S. Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S. cerevisiae via expression of b-glucosidase on its cell surface. Enzyme Microbial. Technol. 2008, 43(3), 233–236.

25. Jin Y. S., Laplaza J. M., Jeffrie T. W. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl. Environ. Microbiol. 2004, 70(11), 6816–6825.

26. Eiteman M., Lee S., Altman E. A co-fermentation strategy to consume sugar mixtures effectively. J. Biol. Eng. 2008, 2(3), 8–13.

27. Krause F. S., Henrich A., Blombach B. Increased glucose utilization in Corynebacterium glutamicum by use of maltose, and its application for the improvement of L-valine productivity. Appl. Environ. Microbiol. 2010, 76(1), 370–374.

28. Arndt A., Auchter M., Ishige T. Ethanol catabolism in Corynebacterium glutamicum. J. Mol. Microbiol. Biotechnol. 2008, 15(4), 222–233.

29. Kotrbova-Kozak A., Kotrba P., Inui M. Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R. Appl. Microbiol. Biotechnol. 2007, 76(6), 1347–1356.

30. Engels V., Wendisch V. F. The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J. Bacteriol. 2007, 189(8), 2955–2966.

31. Meijnen J. P., Verhoef S., Briedjlal A. A. Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy. Appl. Microbiol. Biotechnol. 2011,?90(3), 885–893.

32. Verhoef S., Ballerstedt H., Volkers R. J. Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonasputida S12: novel responses and implications for strain improvement. Appl. Microbiol. Biotechnol. 2010, 87(2), 679–690.

33. Easterling E .R., French W. T., Hernandez R., Licha M. The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour. Technol. 2009, 100(1), 356–361.

34. Pecyna M., Bizukojc M. Lovastatin biosynthesis by Aspergillus terreus with the simultaneous use of lactose and glycerol in a discontinuous fed-batch culture. J. Biotechnol. 2011, 151(1), 77–86.

35. Bizukojc M., Ledakowicz S. Simultaneous biosynthesis of (+)-geodin by a lovastatin producing fungus Aspergillus terreus in batch and fed-batch culture in the stirred tank bioreactors. J. Biotechnol. 2007, 132(4), 453–460.

36. Jia Z., Zhang X., Zhao Y., Cao X. Enhan­cement of lovastatin production by supplementing polyketide antibiotics to the submerged culture of Aspergillus terreus. Appl. Biochem. Biotechnol.? 2010,?160(7), 2014–2025.

37. Bizukojc M., Ledakowicz S. Amacrokinetic modelling of the biosynthesis of lovastatin by Aspergillus terreus. J. Biotechnol. 2007, 130(4), 422–435.

38. Pidgoskyi V. S. Iutynska G. O., Pypog T. P. Intensification of technology of microbial synthesis. K. Nauk. dumka, 2010, 327 p. (In Ukrainian).

39. Bordoloi N. K., Konwar B. K. Microbial surfactant-enhanced mineral oil recovery under laboratory conditions. Colloids and Surfaces B: Biointerfaces. 2008, 63(1), 73–82.

40. Sarubbo L. A., Farias C. B., Campos-Takaki G. M. Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr. Microbiol. 2007, 54(1), 68–73.

41. Banat I. M., Franzetti A., Gandolfi I. Microbial biosurfactants production, applications and future potential. J. Appl. Microbiol. Biotechnol. 2010, 87(2), 427–444.

42. Abdel-Mawgoud A. M, L?pine F., D?ziel E. Rhamnolipids: diversity of structures, microbial origins and roles. J. Appl. Microbiol. Biotechnol. 2010, 86(5), 1323–1336.

43. M?ller M. M., Hausmann R. Regulatory and metabolic network of rhamnolipid biosynthesis: Traditional and advanced engineering towards biotechnological production. J. Appl. Microbiol. Biotechnol. 2011, 91(2), 251–264.

44. Nguyen T. T., Sabatini D. A. Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications. Int. J. Mol. Sci. 2011, 12(2), 1232–1244.

45. Singh A., Van Hamme J. D., Ward O. P. Surfactants in microbiology and biotechnology Part2 Application aspects. Biotechnology Advances. 2007, V. 25, P. 99–121.

46. Raaijmakers J. M., de Bruijn I., Nybroe O., Ongena M. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 2010, 34(6), 1037–1062.

47. Pyrog T. P.,Ignatenko S. V. Microbial surfactants: problems of industrial production. Biotekhnologiia. 2008, 1(4), 29–38. (In Ukrainian).

48. Wan Nawawi W. M., Jamal P., Alam M. Z. Utilization of sludge palm oil as a novel substrate for biosurfactant production. Bioresour. Technol. 2010, 101(23), 9241–9247.

49. Makkar R. S., Cameotra S. S., Banat I. M. Advances in utilization of renewable substrates for biosurfactant production. AMB Express. 2011, 1(5).

50. Thavasi R., Jayalakshmi S., Banat I. M. Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour. Technol. 2011, 102(3), 3366–3372.

51. Morita T., Konishi M., Fukuoka T. Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties. J. Bioscі. Bioeng. 2008, 105(5), 493–502.

52. Morita T., Konishi M., Fukuoka T. Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317. J. Bioscі. Bioeng. 2007,?104(1), 78–81.

53. Mutalik S. R., Vaidya B. K., Joshi R. M. Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour. Technol. 2008, 99(16), 7875–7880.

54. Seghal K. G., Anto T. T., Selvin J.. Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 іn solid state culture. J. Bioscі. Bioeng. 2010,?101(7), 2389–2396.

55. Daverey A., Pakshirajan K. Sophorolipids from Candida bombicola using mixed hydrophilic substrates: production, purification and characterization. Colloids Surf. B. Biointerfaces. 2010, 79(1), 246–253.

56. Kim Y. B., Yun H. S., Kim E. K. Enhanced sophorolipid production by feeding-rate-controlled fed-batch culture. Bioresour. Technol. 2009, 100(23), 6028–6032.

57. Van Bogaert I. N., Saerens K., De Muynck C. Microbial production and application of sophorolipids. Appl. Microbiol. Biotechol. 2007, 76(1), 23–34.

58. Daverey A., Pakshirajan K. Kinetics of growth and enhanced sophorolipids production by Candida bombicola using a low-cost fermentative medium. Appl. Bioch. Biotechnol. 2010, 160(7), 2090–2101.

59. Pansiripat S., Pornsunthorntawee O., Rujiravanit R. Biosurfactant production by Pseudomonas aeruginosa SP4 using sequencing batch reactors: Effect of oil-to-glucose ratio. Biochem. Eng. J. 2010, 49(1), 185–191.

60. Raza Z. A., Khan M. S., Khalid Z. M. Evaluation of distant carbon sources in biosurfactant production by a gamma ray-induced Pseudomonas putida mutant. J. Bioscі. Bioeng. 2007,?42(4), 686–692.

61. Ashby R. D., Solaiman D. K., Foglia T. A. Property control of sophorolipids: influence of fatty acid substrate and blending. Biotechnol. Lett. 2008, 30(6), 1093–1100.

62. Hu Y., Ju L. K. Sophorolipid production from different lipid precursors observed with LC-MS. Enzyme Microb. Technol. 2001, V. 29, P. 593–601.

63. Bilets I. V., Konon A. D., Pirog T. P. Effect of molar ratio monosubstrativ concentration in the mixture for synthesis of surfactants Acinetobacter calcoaceticus K-4. Kharch. Prom-ct. 2011, No 10, P. 127–132. (In Ukrainian).

64. Pirog T. P., Shevchuk T. A., Konon A. D. Synthesis of Acinetobacter calcoaceticus IMV B-7241 surfactants and IMV Ac-5017 Rhodococcus erythropolis in a medium with glycerol. Mikrobiol. zhurn. 2012, 74(1), 2027. (In Russian).

65. Shulyakova M. O., Pirog T. P., Shevchuk T. A. Some patterns the synthesis of surfactants on growth conditions Rhodococcus erythropolis IMV Ac-5017 on a mixture of growth substrates. Mikrobiol. biotekhnol. 2012, 1(17), 57–65. (In Ukrainian).

66. Pirog T. P., Konon A. D., Shevchuk T. A., Bilits I. V. Intensification of synthetic surfactants Acinetobacter calcoaceticus IMV B-7241 on a mixture of hexadecane and glycerol. Mikrobiologiya. 2012,?81(5), 611–618. (In Russian).

67. Pirog T. P., Kovalenko M. A., Kuzminskaya Yu. V., Krishtab T. P. Energy and biochemical aspects of the intensification of the synthesis of exopolysaccharides Acinetobacter sp. a mixture of glucose and etanol. Mikrobiologiya. 2003, 72(3), 348–355. (In Russian).

68. Pirog T. P., Shevchuk, T. A., Shulyakova M. O., Metabolism of glycerol at producing of surfactants Acinetobacter calcoaceticus IMV V-7241 and Rhodococcus erythropolis IMV Ac-5017. Mikrobiol. zhurn. 2012, 74(4), 2936. (In Russian).

69. Pirog T. P., Korzh Yu. V., Shevchuk T. A., Tarasenko D. A. Features of C2-intensifying metabolism and synthesis of surfactants from the strain Rhodococcus erythropolis EK-1 growing in ethanol. Mikrobiologiya. 2008, 77(6), 749–757. (In Russian).

70. Pirog T. P., Shevchuk T. A., Klimenko Yu. O. Features of oxidation of alkanes in Rhodococcus erythropolis EK-1 - the producer of surfactants. Mikrobiol. zhurn. 2009, 71(4), 9–13. (In Ukrainian).

71. Pirog T. P Shevchuk T. A., Klimenko Yu. O., Tarasenko D. A. Features of tregalozomikolate synthesis under different growth conditions Rhodococcus erythropolis EK-1 in ethanol and hexadecane. Kharch. prom-st. 2009, No 8, P. 11–14. (In Ukrainian).