Select your language

ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)

 5 2013

"Biotechnologia Acta" v. 6, no. 5, 2013
https://doi.org/10.15407/biotech6.05.122
Р. 122-130, Bibliography 29, Ukrainian
Universal Decimal classification: 581.133.1.557

REALIZATION OF NITROGEN FIXATION POTENTIAL OF TN5-MUTANTS Bradyrhizobium japonicum IN SYMBIOSIS WITH SOYBEAN PLANTS

N. A. Vorobey, S. Ya. Kots, P. M. Mamenko

Institute of Plant Physiology and Genetics of National Academy of Sciences of Ukraine, Kyiv, Ukraine

Nodule bacteria of different rate and dynamics of nitrogenase activity in symbiosis with soybean plants were selected as the result of investigation of Bradyrhizobium japonicum Tn5-mutants. Insertion nature of mutations that lead to appearance of KmR forms of B. japonicum with changed symbiotic properties was proved by PCR- technique. Tn5-mutants of B. Japonicum were analyzed for their symbiotic characteristics in vegetative and small plot experiments during different ontogenesis stages of various soybean plants (Annushka, Vasylkivska, Maryana, Colbi) that cover three cultivar maturity groups. It was established that dynamics and intensity of nitrogen assimilation in soybean root nodules depended on microsymbiont genotype, as well as cultivar and development stage of host plant. It was shown that Tn5-mutants obtained with the plasmid pSUP5011::Tn5mob were more efficient in symbiosis with early-maturing soybean cultivars Annushka and Vasylkivska, while mutants obtained with the pSUP2021::Tn5 plasmid — more efficient in symbiosis with Maryana and Colbi soybean cultivars with the prolonged vegetation period. Tn5-mutants of B. japonicum Т66, Т21-2, В-18 and В-20 with advanced complementarity properties, that ensure higher nitrogen fixation rates in soybean plants during budding and budding–early flowering stages resulting in yield increase as comparing to the B. Japonicum strains 646 and 634b were selected. The possibilities of creation of polycomponent inoculum for soybean cultivars belonging to different maturity groups based on the rhizobia strains with various intensity and dynamics of nitrogen fixation activity are discussed.

Key words: legume-rhizobial symbiosis, Bradyrhizobium japonicum, Tn5-mutants.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013

References

1. Kots S. Ya., Morgun V. V., Patyka V. F. Biological nitrogen fixation: legume-rhizobial symbiosis. Кyiv: Logos. 2010, V. 1, 508 p. (In Russian).

2. Genetics of symbiotic nitrogen fixation with the basics of breeding. Ed. Tikhonovich I. A., Provorov N. A. SPb: Nauka. 1998, 194 p.  (In Russian).

3. Rhizobiaceae. Molecular biology of bacteria that interact with plants. Ed. Spainka G., Kondoroshi A., Khukas P. Transl. Tikhonovich I. A., Provorov N. A. SPb. 2002, 567 p. (In Russian).

4. Babych O. A., Nemtsov A. V., Petrinenko V. F. Scientific basis of modern technology in soybean seeds under steppes of Ukraine. Science. works of Vinnytsia state agrarian university. Vinnitsa. 2000, V. 7, P. 10–13. (In Ukrainian).

5. Tolkachov M. Z, Didovych S. V., Adamen F. F., Nesterchuk N. N. Efficiency of nitrahinization of irrigated soybean on background soil populations Bradyrhizobium japonicum. Fiziol. biochim. kult. rast. 2001, 33 (5), 436–440. (In Ukrainian).

6. Adamen F. F. Theoretical study of mineral nutrition of soybean plants in Southern Ukraine. Simferopol: Tavrida. 1995, 94 p. (In Russian).

7. Kots S. Ya. role of biological nitrogen in increasing productivity of crops. Fiziol. biochim. kult. rast.  2001, 33 (3), 208–215. (In Ukrainian).

8. Antypchuk A. F., Andreyuk E. I., Rangelova V. I. Growth activity and technological properties of nitrogen-fixing microorganisms when cultured heterophasic. Mikrobiol. zhurn. 1997, 59 (4), 117–123. (In Russian).

9. Smith R. S. Rhizobial inoculant technology in North America. Biology of Plant-Microbe Interactions: New Bridges between Past and Future: Proccedings of the 11 International congress on Molecular Plant — Microbe Interactions. St. Peterburg. July 18–26, 2003. St. Paul. (Minn). 2004, Р. 294–596.

10. Patyka V. F., Tolkachov N. Z., Butvina Yu. Z. The main directions of optimization of symbiotic nitrogen fixation in modern agriculture in Ukraine. Fiziol. biochim. kult. rast. 2005, 37 (5), 384–393. (In Russian).

11. Patyka V. P., Kots S. Ya., Volkogon V. V. Biological nitrogen. Кyiv: Svit. 2003, 424 p.  (In Ukrainian).

12. Malichenko S. M., Datsenko V. K., V. M. Transpozon mutagenesis of strains Bradyrhizobium japonicum. Fiziol. biochim. kult. rast. 2007, 39 (5), 409–418. (In Ukrainian).

13. Simon R., O,Connel M., Labes M., Puhler A. Plasmid vectors for the genetic analysis and manipulations of Rhizobia and other gram-negative bacteria. Methods inenzymology. Academ. Press Inc. 1986, V. 118, P. 640–659.

14. Kots S. Ya., Morgun V. V., Tikhonovich I. A. Biological nitrogen fixation: The genetics of nitrogen fixation, genetic engineering strains. Кyiv: Logos. 2011, V. 3, 404 p. (In Russian).

15. Kots S. Ya., Malichenko S. M., Datsenko V. K. Tn5- mutants of Bradyrhizobium japonicum: obtaining and studying of their properties. Fact. observed. evola. mikroorh. Collection of science. pr. V. 7. Кyiv: Logos. 2009, P. 28–32.  (In Russian).

16. Comfort N. C. From controlling elements to transposons: Barbara McClintock and the Nobel Prize. Trends Biochem. Sci. 2001, V. 26, P. 454–457.
https://doi.org/10.1016/S0968-0004(01)01898-9

17. Vorobei N. A., Kots S. Ya., Malichenko S. M., Yakimchuk R. A. The study of symbiotic soybean formed involving transpozants Bradyrhizobium japonicum. Fiziiol. biochim. kult. rast. 2006, 38 (5), 418–426. (In Ukrainian).

18. Karr D. B., Rong-Ti L., Reuhs B. L., Emerich D. W. Altered exopolysaccharides of Bradyrhizobium japonicum mutants correlate with impaired soybean lectin binding, but not with effective nodule formation. Planta. 2000, V. 211, P. 218–226.
 https://doi.org/10.1007/s004250000288

19. Marrogui S., Zorreguieta A., Santamari C. Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants. J. Bateriol. 2001, 183 (3), 854–864.
https://doi.org/10.1128/JB.183.3.854-864.2001

20. Prevost D., Bromfield E. S. P. Diversity of symbiotic rhizobia resident in Canadian soils. Can. J. Soil Sci. 2003, 83 (3), 311–319.
https://doi.org/10.4141/S01-066

21. Kots S. Ya., Morgun V. V., Patyka V. F. Biological nitrogen fixation: legume-rhizobial symbiosis. V. 1. Кyiv: Logos. 2019, 508 p. (In Russian).

22. Chachaty E., Saulnier P. Isolation chromosomal DNA from bacteria. The Nucleic Acid Protocols Handbook (R. Rapley Ed.). Humana Press Inc., Totowa NJ. 2000, P. 29–32.

23. Miller Dzh. Experiments in molecular genetics. Мoskva: Mir. 1976, 395 p. (In Russian).

24. Sambrook J., Frisch E. F., Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Lab. Press. 1998.

25. Vorobei N. A., Zaets V. M., Kots S. Ya. Biotechnology of effective Tn5-mutant rhizobia clover creating Rhizobium leguminosarum bv. Trifolii. Biotekhnolohiia. 2012, 5 (3), 53–61. (In Ukrainian).

26. Reznikoff W. S. Transposon Tn5. Annu. Rev. Genet. 2008, V. 42, P. 151–158.
https://doi.org/10.1146/annurev.genet.42.110807.091656

27. Grodzinskii A. M., Grodzinskii D. M. A short guide to Plant Physiology. Кyiv: Nauk. dumka. 1964, 388 p. (In Russian).

28. Hardy R. W. F., Holsten R. D, Jackson E. K., Burns R. C. The acetylene-etylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 1968, 43 (8), 1185–1207.
 https://doi.org/10.1104/pp.43.8.1185

29. Dospekhov B. A. Methods of field experience. Мoskva: Agropromizdat. 1985, 352 p. (In Russian).