ISSN 2410-776X (Online),
ISSN 2410-7751 (Print)
"Biotechnologia Acta" v. 6, no. 5, 2013
https://doi.org/10.15407/biotech6.05.009
Р.9-18, Bibliography 63, Ukrainian
Universal Decimal classification: 60-022.513.2
NANODIAMONDS FOR FLUORESCENT CELL AND SENSOR NANOTECHNOLOGIES
V. I. Nazarenko, O. P. Demchenko
Palladian Institute of Biochemistry of National Academy of Sciences of Ukraine, Kyiv
This review addresses the analysis of properties and applications of fluorescent nanodiamonds. They are carbon nanostructures with atomic arrangement of a diamond and carry all its properties, including record — high density, rigidity and refraction index. They are of almost spherical shape, and their small size (~4–10 nm) creates substantial surface area that can be used for absorption of different compounds including drugs. Their surface is formed by different chemical groups (hydroxyls, carboxyls, etc.) exhibits also chemical reactivity that allows different types of modifications. This opens innumerable possibilities for constructing different functional nanomaterials. The technologies have been developed for making these nanodiamonds fluorescent. Particularly, these properties are achieved by radioactive treatment with the formation of N–V impurities. These particles absorb and emit light in convenient for observation visible range of spectrum. They do not photobleach, which is very attractive for fluorescent microscopy of the cell. And, finally, these nanoparticles do not display toxicity on the cellular or whole — body level, and because of their biocompatibility they can be used in vivo as contrast agents and drug carriers. It is expected that future biotechnological applications of these nanoparticles will be connected with the creation of nanocomposites that combine multiple useful functions.
Key words: nanobiotechnology, nanodiamonds, fluorescence, nanocomposites.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Prilytska S.V., Remeniak O.V., Honcharenko Yu.V., Prylutskii Yu.I. Carbon nanotubes as a new class of materials for bionanotehnology. Biotekhnolohiia. 2009, 2 (2), 55–66. (In Ukrainian).
2. Prilytska S.V., Remeniak O.V., Burlaka A. P., Prylutskii Yu.I. Prospects for useing of carbon nanotubes in cancer treatment. Onkolohiia. 2010, 12 (1), 5–9. (In Ukrainian).
3. Prilytska S.V., Rotko D.M., Prylutskii Yu.I., Rybalchenko V. K. toxicity of carbon nanostructures in the systems and in vitro and in vivo. Sovr. probl. toksikol. 2012, N 3–4, P. 49–57. (In Ukrainian).
4. Sahalianov I. Yu., Prylutskii Yu.I., Radchenko T. M., Tatarenko V. A. Graphene systems, methods of manufacture and processing, structure and functional properties. UFM. 2010, 11 (1), 95–138.
5. Rotko D.M., Prilytska S.V., Bohutska K.I., Prylutskii Yu.I. Carbon nanotubes as new materials for neyroinzheneriyi. Biotekhnolohiia. 2011, 4 (5), 9–24. (In Ukrainian).
6. Prilytska S.V., Kichmarenko Yu. M., Bohutska K.I., Prylutskii Yu.I. Fullerene C60 and its derivatives as antitumor agents: problems and prospects. Biotekhnolohiia. 2012, 5 (3), 9–17. (In Ukrainian).
7. Holinko V. M., Chekman I. S., Puzyrenko A. M., Horchakova N. O. The role of capillaries in the flow of natural nanoprocesses. Ukr. nauk.-med. molod. zhurn. 2012, N 4, P. 5–9. (In Ukrainian).
8. Krueger A. New Carbon Materials: Biological Applications of Functionalized Nanodiamond Materials. Chemistry — A. Eur. J. 2008, 14 (5), 1382–1390.
https://doi.org/10.1002/chem.200700987
9. Shimkunas R. A., Robinson E., Lam R. Nanodiamond — insulin complexes as pH — dependent protein delivery vehicles. Biomaterials. 2009, 30 (29), 5720–5728.
https://doi.org/10.1016/j.biomaterials.2009.07.004
10. Chen M., Pierstorff E. D., Lam R. Nanodiamond — mediated delivery of water — insoluble therapeutics. ACS Nano. 2009, 3 (7), 2016–2022.
https://doi.org/10.1021/nn900480m
11. Huang H., Pierstorff E., Osawa E., Ho D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 2007, 7 (11), 3305–3314.
https://doi.org/10.1021/nl071521o
12. Purtov K., Petunin A., Burov A. Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances. Nanosc. Res. Lett. 2010, 5 (3), 631–636.
https://doi.org/10.1007/s11671-010-9526-0
13. Schrand A. M., Hens S. A. C., Shenderova O. A. Nanodiamond Particles: Properties and Perspectives for Bioapplications. Crit. Rev. Solid State Mat. Sci. 2009, 34 (1–2), 18–74. (In Ukrainian).
https://doi.org/10.1080/10408430902831987
14. Cuche A., Sonnefraud Y., Faklaris. Diamond nanoparticles as photoluminescent nanoprobes for biology and near — field optics. J. Luminesc. 2009, 129 (12), 1475–1477.
https://doi.org/10.1016/j.jlumin.2009.04.089
15. Krueger A. New carbon materials: biological applications of functionalized nanodiamond materials. Chemistry. 2008, 14 (5), 1382–1390.
https://doi.org/10.1002/chem.200700987
16. Danilenko V. V. From the history of the discovery of nanodiamonds synthesis. Fiz. tverd. tela. 2004, 46 (4), 581–584. (In Ukrainian).
17. Novikov N. V., Bogatyreva G. P., Voloshin M. N. Detonation diamonds in Ukraine. Fiz. tverd. tela. 2004, V. 46, P. 585–590. (In Ukrainian).
18. Yu S. J., Kang M. W., Chang H. C. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc. 2005, 127 (50), 17604–17605.
https://doi.org/10.1021/ja0567081
19. Chao J. I., Perevedentseva E., Chung P. H. Nanometer — sized diamond particle as a probe for biolabeling. Biophys. J. 2007, 93 (6), 2199–2208.
https://doi.org/10.1529/biophysj.107.108134
20. Chang Y. R., Lee H. Y., Chen K. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 2008, 3 (5), 284–288.
https://doi.org/10.1038/nnano.2008.99
21. Chang I. P., Hwang K. C., Chiang C. S. Preparation of fluorescent magnetic nanodiamonds and cellular imaging. J. Am. Chem. Soc. 2008, 130 (46), 15476–15481.
https://doi.org/10.1021/ja804253y
22. Davies G., Lawson S. C., Collins A. T. Vacancy — related centers in diamond. Phys. Rev. B. 1992, 46 (20), 13157–13170.
https://doi.org/10.1103/PhysRevB.46.13157
23. Faklaris O., Botsoa J., Sauvage T. Photoluminescent nanodiamonds: Comparison of the photoluminescence saturation properties of the NV color center and a cyanine dye at the single emitter level, and study of the color center concentration under different preparation conditions. Diamond Rel. Mat. 2010, 19 (7–9), 988–995.
https://doi.org/10.1016/j.diamond.2010.03.002
24. Beveratos A., Brouri R., Gacoin T. Nonclassical radiation from diamond nanocrystals. Phys. Rev. A. 2001, 64 (6), 061802.
https://doi.org/10.1103/PhysRevA.64.061802
25. Faklaris O., Garrot D., Joshi V. Detection of Single Photoluminescent Diamond Nanoparticles in Cells and Study of the Internalization Pathway. Small. 2008, 4 (12), 2236–2239.
https://doi.org//10.1002/smll.200800655
26. Aharonovich I., Castelletto S., Simpson D. A. Two — level ultrabright single photon emission from diamond nanocrystals. Nano Lett. 2009, 9 (9), 3191–3195.
https://doi.org/10.1021/nl9014167
27. Wee T. L., Mau Y. W., Fang C. Y. Preparation and characterization of green fluorescent nanodiamonds for biological applications. Diamond Rel. Mat. 2009, 18 (2–3), 567–573.
https://doi.org/10.1016/j.diamond.2008.08.012
28. Vial S., Mansuy C., Sagan S. Peptide — grafted nanodiamonds: preparation, cytotoxicity and uptake in cells. Chembio-chemistry. — 2008, 9 (13), 2113–21119.
https://doi.org/10.1002/cbic.200800247
29. Krueger A., Lang D. Functionality is Key: Recent Progress in the Surface Modification of Nanodiamond. Adv. Funct. Mat. 2012, 22 (5).https://doi.org/10.1002/adfm. 201102670.
30. Knickerbocker T., Strother T., Schwartz M. P. DNA — Modified Diamond Surfaces. Langmuir. 2003, 19 (6), 1938–1942.
https://doi.org/0.1021/la026279+
31. Tzeng Y. K., Faklaris O., Chang B. M. Superresolution imaging of albumin — conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew Chem. Int. Ed. Engl. 2011, 50 (10), 2262–2265.
https://doi.org/10.1002/anie.201007215
32. Huang L. C. L.,Chang H. C. Adsorption and Immobilization of Cytochrome c on Nanodiamonds. Langmuir. 2004, 20 (14), 5879–5884.
https://doi.org/10.1021/la0495736
33. Kossovsky N., Gelman A., Hnatyszyn H. J. Surface — modified diamond nanoparticles as antigen delivery vehicles. Bioconjug. Chem. 1995, 6 (5), 507–511.
https://doi.org/10.1021/bc00035a001
34. Chung P. H., Perevedentseva E., Tu J. S. Spectroscopic study of bio — functionalized nanodiamonds. Diamond Rel. Mat. 2006, 15 (4–8), 622–625.
https://doi.org/10.1016/j.diamond.2005.11.019
35. Takimoto T., Chano T., Shimizu S. Preparation of Fluorescent Diamond Nanoparticles Stably Dispersed under a Physiological Environment through Multistep Organic Transformations. Chem. Mat. 2010, 22 (11), 3462–3471.
https://doi.org/10.1021/cm100566v
36. Barras A., Szunerits S., Marcon L. Functionalization of Diamond Nanoparticles Using «Click» Chemistry. Langmuir. 2010, 26 (16), 13168–13172.
https://doi.org/10.1021/la101709q
37. Gibson N. M., Luo T. J. M., Shenderova O. Fluorescent dye adsorption on nanocarbon substrates through electrostatic interactions. Diamond Rel. Mat. 2010, 19 (2–3), 234–237.
https://doi.org/10.1016/j.diamond.2009.10.005
38. Demchenko A. P. Introduction to fluorescence sensing. Amsterdam: Springer Verlag. 2009, 586 p.
https://doi.org/10.1007/978-1-4020-9003-5
39. Demchenko A. P. Visualization and sensing of intermolecular interactions with two — color fluorescent probes. FEBS Lett. 2006, 580 (12), 2951–2957.
https://doi.org/10.1016/j.febslet.2006.03.091
40. Tisler J., Reuter R., L?mmle A. Highly Efficient FRET from a Single Nitrogen — Vacancy Center in Nanodiamonds to a Single Organic Molecule. ACS Nano. 2011, 5 (10), 7893–7898.
https://doi.org/10.1021/nn2021259
41. Chen Y., Shu H., Kuo Y., Tzeng Y. Measuring F?rster resonance energy transfer between fluorescent nanodiamonds and near — infrared dyes by acceptor photobleaching. Diamond Rel. Mat. 2011, 20 (5–6), 803–807.
https://doi.org/10.1016/j.diamond.2011.03.039
42. Maitra U., Jain A., George S. J., Rao C. N. R. Tunable fluorescence in chromophore — functionalized nanodiamond induced by energy transfer. Nanoscale. 2011, 3 (8), 3192–3197.
https://doi.org/10.1039/c1nr10295h
43. Maggini L., Bonifazi D. Hierarchised luminescent organic architectures: design, synthesis, self-assembly, self-organisation and functions. Chem. Soc. Rev. 2012, 41 (1), 211–241.
https://doi.org/10.1039/C1CS15031F
44. Zhang B., Li Y., Fang C. Y. Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study. Small. 2009, 5 (23), 2716–2721.
https://doi.org/10.1002/smll.200900725
45. Rojas S., Gispert J. D., Martin R. Biodistribution of amino- functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission. ACS Nano. 2011, 5 (7), 5552–5559.
https://doi.org/10.1021/nn200986z
46. Louie A. Multimodality imaging probes: design and challenges. Chem. Rev. 2010, 110 (5), 3146–3195.
https://doi.org/10.1021/cr9003538
47. Ismaili H., Workentin M. S. Covalent diamond — gold nanojewel hybrids via photochemically generated carbenes. Chem. Commun. (Camb). 2011, 47 (27), 7788–7790.
http://dx.doi.org/10.1039/c1cc12125a
48. Petr?kov? V., Taylor A., Kratochv?lov? I. Luminescence of Nanodiamond Driven by Atomic Functionalization: Towards Novel Detection Principles. Adv. Funct. Mat. 2011, V. 24, P. 1697–1702.
49. Fu C. C., Lee H. Y., Chen K. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA. 2007, 104 (3), 727–732.
https://doi.org/10.1073/pnas.0605409104
50. Hui Y. Y., Zhang B., Chang Y.-C. Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. Opt. Express. 2010, 18 (6), 5896–5905.
https://doi.org/10.1364/OE.18.005896
51. Schrand A. M., Lin J. B., Hens S. C., Hussain S. M. Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore — bound nanodiamonds. Nanoscale. 2011, 3 (2), 435–452.
https://doi.org/10.1039/C0NR00408A
52. Puzyr A. P., Baron A. V., Purtov K. V. Nanodiamonds with novel properties: A biological study. Diamond Rel. Mat. 2007, 16 (12), 2124–2128.
https://doi.org/10.1016/j.diamond.2007.07.025
53. Schrand A. M., Dai L., Schlager J. J. Differential biocompatibility of carbon nanotubes and nanodiamonds. Diamond Rel. Mat. 2007, 16 (12), 2118–2123.
https://doi.org/10.1016/j.diamond.2007.07.020
54. Schrand A. M., Huang H., Carlson C. Are Diamond Nanoparticles Cytotoxic? J. Phys. Chem. B. 2006, 111 (1), 2–7.
https://doi.org/10.1021/jp066387v
55. Yuan Y., Chen Y., Liu J.-H. Biodistribution and fate of nanodiamonds in vivo. Diamond Rel. Mat. 2009, 18 (1), 95–100.
https://doi.org/10.1016/j.diamond.2008.10.031
56. Mohan N., Chen C. S., Hsieh H. H. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010, 10 (9), 3692–3699.
https://doi.org/10.1021/nl1021909
57. Liu K. K., Zheng W. W., Wang C. C. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology. 2010, 21 (31), 315106.
https://doi.org/10.1088/0957-4484/21/31/315106
58. Chow E. K., Zhang X. Q., Chen M. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 2011, 3 (73), 73ra21.
https://doi.org/10.1126/scitranslmed.3001713
59. Smith A. H., Robinson E. M., Zhang X. Q. Triggered release of therapeutic antibodies from nanodiamond complexes. Nanoscale. 2011, 3 (7), 2844–2848.
https://doi.org/10.1039/c1nr10278h
60. Faklaris O., Joshi V., Irinopoulou T. Photoluminescent Diamond Nanoparticles for Cell Labeling: Study of the Uptake Mechanism in Mammalian Cells. ACS Nano. 2009, 3 (12), 3955–3962.
https://doi.org/10.1021/nn901014j
61. Say J., van Vreden C., Reilly D. Luminescent nanodiamonds for biomedical applications. Biophys. Rev. 2011, 3 (4), 171–184.
https://doi.org/10.1007/s12551-011-0056-5
62. Vaijayanthimala V., Chang H.-C. Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine. 2009, 4 (1), 47–55.
https://doi.org/10.2217/17435889.4.1.47
63. Yun X., Liming D. Nanodiamonds for nanomedicine. Nanomedicine. 2009, 4 (2), 207–218.
https://doi.org/10.2217/17435889.4.2.207