ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 6, no. 3, 2013
https://doi.org/10.15407/biotech6.03.023
Р. 23-35, Bibliography 55, Ukrainian.
Universal Decimal classification: 759.873.088.5:661.185
BACTERIA OF NOCАRDIA GENUS AS OBJECT OF BIOTECHNOLOGY
T. P. Pirog, D. I. Khomyak, N. A. Grytsenko, A. P. Sofilkanych, А. D. Konon, K. A. Pokora
National University of Food Technologies, Kyiv, Ukraine
The literature and own experimental data, concerning biotechnological potential of bacteria of Nocаrdia genus are given. The use of these microorganisms as destructors of aliphatic (octane, pentadecanol, eicosane, octacosane, hexatriacontane, pristane), aromatic (phenol, octylbenzene, phenanthrene, anthracene), nitroaromatic (4-nitrophenol), heterocyclic (pyridine, ?-picoline) hydrocarbons is described. The prospects of use of Nocаrdia in processes of substances bio-transformation (production of daidzein, ibuprofen, nicotinic acid) and synthesis of some valuable metabolites, in particular antimicrobial and cytotoxic substances (ayamycin, transvalencin А, nocathiacin, brasilibactin A, nocaracins etc.) as well as substances with surface-active and emulsifying properties are discussed.
The own experimental data concerning optimization of cultivation conditions and intensification of surfactant synthesis on glycerol (byproduct of biodiesel production) by oil oxidizing bacteria strain Nocardia vaccinii K-8, that was isolated from oil polluted samples of soil are presented. The ability of strain K-8 to assimilate some aromatic compounds (phenol, benzene, toluene, naphthalene, hexachlorbenzene, sulfanilic acid and N-phenylanthranilic acid, 0.3–0.5%) was determined. It was shown that the highest oil destruction degree (94–98%) in polluted water (2.6 g/L) was achieved in the case of treatment with suspension of N. vaccinii K-8 cells (9.8 x 107 CFU/mL) after 30 days, while surfactant preparation of post fermentative cultural liquid (100–300 mL/kg) was more effective for remediation (destruction of 74–83% of oil) of oil polluted soil (20 g/kg). It was determined that surfactants (0.085–0.85 mg/mL) and other exocellular metabolites of strain К-8 possess antimicrobial activity against some phytopathogen bacteria of Pseudomonas and Xanthomonas strains. In this connection the quantity of living cells decreased by 80–100% after the treatment with the investigated preparations.
Key words: bacteria of Nocаrdia genus, destruction of oil pollution, biotransformation, antibiotics, surfactants.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2013
References
1. Webley D. M., Duff R. B., Farmer V. C. Evidence for b-oxidation in the metabolism of saturated aliphatic hydrocarbons by soil species of Nocardia. Nature. 1956, V.?178, P. 1467–1468.
2. Rozanova E. P. Using hydrocarbons by microorganisms. Uspekhi mikrobiol. 1967, N 4, P. 61–96. (In Russian).
3. Cain R. B. The microbial metabolism of nitro-aromatic compounds. J. Gen. Microbiol. 1958, 19(1), 1–14.
4. Norris D. B., Trudgill P. W. The purification and properties of cyclohexanone oxygenase from Nocardia globerula CL 1. Biochem. J. 1972,130(1), 30.
5. Sariaslani F. S., Harper D. B., Higgins I. J. Microbial degradation of hydrocarbons. Catabolism of 1-phenylalkanes by Nocardia salmonicolor. Biochem. J. 1974, 140(1),?31–45.
6. Cox D. P., Goldsmith C. D. Microbial conversion of ethylbenzene to 1-phenethanol and acetophenone by Nocardia tartaricans ATCC 31190. Appl. Environ. Microbiol. 1979, 38(3), 514–520.
7. Celmer W. D., Chmurny G. N., Moppett C. E. et al. Structure of natural antibiotic CP-47,444. J. Am. Chem. Soc. 1980, 102(12), 4203–4209.
8. Nesterenko O. A., Kvasnikov E. I., Nogina T. M. Nokardiolike and coryneform bacteria. K.: Nauk. Dumka. 1985, 336 p. (In Russian).
9. Orchard V. The ecology of Nocardia and related taxa. Actynomycetes. Stuttgard. New York: Fisher. 1981, P. 167–180.
10. Yassin A. F., Straubler B., Schumann P. Nocardia puris sp. Nov. Int. J. Syst. Bacteriol. 2003, 53(5), 1595–1599.
https://doi.org/0.1099/ijs.0.02593-0
11. Ali N., Dashti N., Al-Mailem D. Indigenous soil bacteria with the combined potential for hydrocarbon consumption and heavy metal resistance. Environ. Sci. Pollut. Res. Int. 2012, 19(3),?812–820.
https://doi.org/10.1007/s11356-011-0624-z
12. Bhatia M., Singh D. H. Biodegradation of comercial linear alkyl benzenes by Nocardia amarae. J. Biosci. 1996, 21(4), 487–496.
https://doi.org/10.1007/BF02703213
13. Choi K.-Y., Park H.-Y., Kim B.-G. Characterization of bifunctional CYP154 from Nocardia farcinica IFM10152 in the O-dealkylationand orthohydroxylation of formononetin. Enz. Microb. Technol. 2010, 47(7), 327–334.
https://doi.org/10.1016/j.enzmictec.2010.08.006
14.De Pasquale C., Palazzolo E., Lo Piccolo L. Degradation of long-chain n-alkanes in soil microcosms by two actinobacteria. J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng. 2012, 47(3),?374–381.
https://doi.org/10.1080/10934529.2012.645786
15. El-Gendy M. M. A., Hawas W. U., Jaspars M. Novel bioactive metabolites from a marine derived bacterium Nocardia sp. ALAA 2000. J. Antibiot. 2008, 61(6),?379–386.
https://doi.org/10.1038/ja.2008.53
16. El-Sersy N.?A., Abou-Elela M. G. Antagonistic effect of marine Nocardia brasiliensis against the ?sh pathogen Vibrio damsela: Application of Plackett-Burman experimental design to evaluate factors affecting the production of the antibacterial agent. Int. J. Oceans Oceanogr.? 2006, 1(1),?141–150.
17. Gao X., Lu Y., Xing Y. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol. Res. 2012, 167(10), 616–622.
https://doi.org/10.1016/j.micres.2012.02.008
18. Hanne L. F., Kirk L. L., Appel S. M. Degradation and induction speci?city in actinomycetes that degrade p-nitrophenol. Appl. Environ. Microbiol. 1993, 59(10), 3505–3508.
19. Hoshino Y., Mukai A., Yazawa K. Transvalencin A, a thiazolidine zinc complex antibiotic produced by a clinical isolate of Nocardia transvalensis I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. (Tokyo). 2004, 57(12), 797–802.
https://doi.org/10.7164/antibiotics.57.797
20. Hoshino Y., Mukai A., Yazawa K. et al. Transvalencin A, a thiazolidine zinc complex antibiotic produced by a clinical isolate of Nocardia transvalensis II. Structure elucidation. J. Antibiot. (Tokyo). 2004, 57(12), 803–807.
https://doi.org/10.7164/antibiotics.57.803
21. Imai T., Yazawa K., Tanaka Y. et al. Productivity of antimicrobial substances in pathogenic actinomycetes Nocardia brasiliensis. Microbiol. Cult. Coll. 1997, V.?13, P.?103–108.
22. Kavitha A., Prabhakar P., Vijayalakshmi M. Production of bioactive metabolites by Nocardia levis MK-VL 113. Lett. Appl. Microbiol. 2009, 49(4), P. 484–490.
https://doi.org/10.1111/j.1472-765X.2009.02697.x
23. Leet J. E., Li W., Ax H. A.Nocathiacins, new thiazolyl peptide antibiotics from Nocardia sp.II. Isolation, characterization,and structure determination. J. Antibiot. (Tokyo). 2003, 56(3), P. 232–242.
https://doi.org/10.7164/antibiotics.56.232
24. Li W., Left J. E., Ax H. A. Nocathiacins, new thiazolyl peptide antibiotics from Nocardia sp. I. Taxonomy, fermentation and biological activities. J. Antibiot. (Tokyo), 2003, 56(3), 226–231.
https://doi.org/10.7164/antibiotics.56.226
25. Lievano R., P?rez H. I., Manjarrez N. et al. Hydrolysis of ibuprofen nitrile and ibuprofen amide and deracemisation of ibuprofen using Nocardia corallina B-276. Molecules. 2012, 17(3), 3148–3154.
https://doi.org/10.3390/molecules17033148
26. Maharjan S., Koju D., Lee H. C. Metabolic engineering of Nocardia sp. CS682 for enhanced production of nargenicin A1. Appl. Biochem. Biotechnol. 2012,?166(3), 805–817.
https://doi.org/10.1007/s12010-011-9470-1
27. Maharjan S., Aryal N., Bhattarai S. Biosynthesis of the nargenicin A1 pyrrole moiety from Nocardia sp. CS682. Appl. Biochem. Biotechnol. 2012, 93(2), 687–696.
https://doi.org/10.1007/s12010-011-9470-1
28. Mikami Y. Biological work on medically important Nocardia species. Actinomycetologica. 2007, V. 21, P. 46–51.
https://doi.org/10.3209/saj.SAJ210107
29. Mukai A., Fukai T., Hoshino Ya. Nocardithiocin, a novel thiopeptide antibiotic, produced by pathogenic Nocardia pseudobrasiliensis IFM 0757, J. Antibiot. 2009, 62(11), 613–619.
https://doi.org/10.1038/ja.2009.90
30. Nhi-Cong L. T., Mikolasch A., Awe S. Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert. J. Bas. Microbiol. 2010, 50(3), 241–253.
https://doi.org/10.1002/jobm.200900358
31. Padoley K. V., Mudliar S. N., Pandey R. A. Microbial degradation of pyridine and a-picoline using a strain of the genera Pseudomonas and Nocardia sp. Bioproc. Bios. Eng. 2009, 32(4), 501–510.
https://doi.org/10.1007/s00449-008-0270-0
32. Quatrini P., Scaglione1 G., De Pasquale C. et al. Isolation of Gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. J. Appl. Microbiol. 2008,104(1), 251–259.
33. Seung H. K., Yoo J. C., Kim T. S. Nargenicin enhances 1,25-dihydroxyvitamin D3- and all-trans retinoic acid-induced leukemia cell differentiation via PKCbI/MAPK pathways. Biochem. Pharmacol. 2009, 77(11), 1694–1701.
https://doi.org/10.1016/j.bcp.2009.03.004
34. Sharma N. N., Sharma M., Bhalla T. C. An improved nitrilase-mediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2. J. Ind. Microbiol. Biotechnol. 2011, 38(9), 1235–1243.
https://doi.org/10.1007/s10295-010-0902-7
35. Shetty K. V., Verma D. K., Srinikethan G. Modelling and simulation of steady-state phenol degradation in a pulsed plate bioreactor with immobilized cells of Nocardia hydrocarbonoxydans. Bioproc. Bios. Eng. 2011,.?34(1), P. 45–56.
https://doi.org/10.1007/s00449-010-0445-3
36. Tsuda M., Nemoto A., Komaki H. Nocarasins A-C and brasiliquinone D, new metabolites from the actinomycete Nocardia brasiliensis. J. Nat. Prod. 1999,?62(7), 1640–1642.
https://doi.org/10.1021/np990265v
37. Tsuda M., Yamakawa M., Oka S. Brasilibactin A, a cytotoxic compound from actinomycete Nocardia brasiliensis. J. Nat. Prod. 2005, 68(3), 462–464.
https://doi.org/org/10.1021/np0496385
38. Vasu V., Kumaresan J., Babu M. G. Active site analysis of cis-epoxysuccinate hydrolase from Nocardia tartaricans using homology modeling and site-directed mutagenesis. Appl. Microbiol. Biotechnol. 2012, 93(6), 2377–2386.
https://doi.org/10.1007/s00253-011-3548-0
39. Wyche T. P., Hou Y., Vazquez-Rivera E. Peptidolipins B-F, antibacterial lipopeptides from an ascidian-derived Nocardia sp. J. Nat. Prod. 2012, 75(4), 735–740.
https://doi.org/10.1021/np300016r
40. Zeinali M., Vossough M., Ardestani S. K. Characterization of a moderate thermophilic Nocardia species able to grow on polycyclic aromatic hydrocarbons. Lett. Appl. Microbiol. 2007, 45(6), 622–628.
https://doi.org/10.1111/j.1472-765X.2007.02241.x
41. Chikere C. B., Chikere B. O., Okpokwasili G. C. Bioreactor-based bioremediation of hydrocarbon-polluted Niger Delta marine sediment, Nigeria. 3 Biotech. 2012, 2(1), 53–66.
42. Bouchez N. M., Rakatozafy H., Marchal RDiversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J. Appl. Microbiol. 1999,?86(3), 421–428.
http://dx.doi.org/10.1046/j.1365-2672.1999.00678.x
43. Coimbra C. D., Ru no R. D., Luna J. M. Studies of the cell surface properties of Candida species and relation to the production of biosurfactants for environmental applications. Curr. Microbiol. 2009, 58(3), 245–251.
https://doi.org/10.1007/s00284-008-9315-5
44. Kaiser J. P., Feng Y., Bollag J. M. Microbial metabolism of pyridine, quinoline, acridine and their derivatives under aerobic and anaerobic conditions. Microbiol. Rev. 1996, 60(3), 483–498.
45. Kaiser J. P., Feng Y., Bollag J. M. Microbial metabolism of pyridine, quinoline, acridine and their derivatives under aerobic and anaerobic conditions. Microbiol. Rev. 1996, 60(3), 483–498.
46. Rhee S. K., Lee K. Y., Chung J. C. Degradation of pyridine of Nocardioides sp. strain OS4 isolated from the oxic zone of a spent shale column. Can. J. Microbiol. 1997, 43(1–3), 205–209.
https://doi.org//10.1139/m97-028https://doi.org//10.1139/m97-028https://doi.org//10.1139/m97-028https://doi.org//10.1139/m97-028https://doi.org//10.1139/m97-028https://doi.org//10.1139/m97-028https://doi.org//10.1139/m97-028https://doi.org//10.1139/m97-028https://doi.org//10.1139/m97-028
47. Kim S. H., Lim E. J., Lee S. O. Puri?cation and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol. Appl. Biochem. 2000,?31(3), 249–253.
https://doi.org/10.1042/BA19990111
48. Hayakawa M. Studies on the isolation and distribution of rare actinomycetes in soil. Actinomycetologica, 2008, 22(1), 12–19.
https://doi.org/10.3209/saj.SAJ220103
49. Banat I., Franzetti A., Gandolfi I. Microbial biosurfactants production, applications and future potential . Appl. Microbiol. Biotechnol. 2010, 87(2), 427–444.
https://doi.org/10.1007/s00253-010-2589-0
50. Pirog T. P., Shevchuk T. A., Voloshina I. N. Использование иммобилизованных на керамзите клеток нефтеокисляющих микроорганизмов для очистки воды от нефти. Prikl. biokhim. mikrobiol. 2005, 41(1), 58–63. (In Russian).
51. Pirog T. P., Ihnatenko C. V. Microbial surfactants: problems of industrial production. Biotekhnolohiia. 2008, 1(4), 29–38. (In Ukrainian).
52. Pirog T. P., Gritsenko N. A., Khomiak D. I. Optimization of the synthesis of surfactants Nocardia vaccinii K-8 at waste bioconversion with biodiesel. Mikrobiol. zhurnal. 2011,?73(4), 15–24. (In Russian).
53. Ciesielski S., Pokoj T., Klimiuk E. Cultivationdependent and independent characterization of microbial community producing polyhydroxyalkanoates from raw glycerol. J. Microbiol. Biotechnol. 2010,?20(5), 853?861.
https://doi.org/10.4014/jmb.0909.09038
54. Da Silva G., Mack M., Contiero J. Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 2009, 27(1), 30–39.
https://doi.org/10.1016/j.biotechadv.2008.07.006
55. Yazdani S., Gonzalez R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr. Opin. Biotechnol. 2007, 18(3), 213–219.
https://doi.org/10.1016/j.copbio.2007.05.002