Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2020 № 3 PRACTICALLY VALUABLE METABOLITES OF MARINE MICROORGANISMS T. P. Pirog, A. O. Martyniuk, O. I. Skrotska, Т. А. Shevchuk
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 13, No 3, 2020
Р. 5-29, Bibliography 129, English
Universal Decimal Classification: 579.663


T. P. Pirog 1, 2, A. O. Martyniuk 1, O. I. Skrotska 1, Т. А. Shevchuk 2

1 National University of Food Technologies, Kyiv
2 Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv

The review considered the modern literature data on the synthesis by fungi, actinobacteria, and bacteria isolated from marine ecosystems (seawater, bottom sediments, flora and fauna, mangrove biomes, glaciers), practically valuable metabolites. Marine microorganisms synthesize a wide range of practically valuable enzymes (cold-active galactosidase, agarase, alginate lyase, fucoidase, chitinase, etc.), surface-active glyco- and lipopeptides with emulsifying, antimicrobial and antiadhesive activity, as well as secondary metabolites with diverse biological activity (antimicrobial, antitumor, cytotoxic). However, the use of marine producers in biotechnological processes is constrained by their low synthesizing capacity and high costs of biosynthesis (complex nutrient media and expensive carbohydrate substrates). In biotechnology, marine microorganisms can be used as sources of genes encoding the synthesis of new biologically active substances with unique properties, including antimicrobial and antitumor.

Key words: marine fungi, bacteria, biologically active substances.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020

  • References
    • 1. Kamjam M., Sivalingam P., Deng Z., Hong K. Deep Sea Actinomycetes and Their Secondary Metabolites. Front. Microbiol. 2017, V. 8, P. 760.

      2. Kamala K., Sivaperumal P. Biomedical Applications of Enzymes from Marine Actinobacteria. Adv. Food Nutr. Res. 2017, V. 80, P. 107−123.

      3. Subramani R., Sipkema D. Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products. Mar. Drugs. 2019, 17 (5), 249.

      4. Hasan S., Ansari M. I., Ahmad A., Mishra M. Major bioactive metabolites from marine fungi: A Review. Bioinformation. 2015, 11 (4), 176−181.

      5. Jin L., Quan C., Hou X., Fan S. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi. Mar. Drugs. 2016, 14 (4), 76.

      6. Mahajan P. M., Nayak S., Lele S. S. Fibrinolytic enzyme from newly isolated marine bacterium Bacillus subtilis ICTF-1: media optimization, purification and characterization. J. Biosci. Bioeng. 2012, 113 (3), 307−314.

      7. Imhoff J. F. Natural Products from Marine Fungi − Still an Underrepresented Resource. Mar. Drugs. 2016, 14 (1), 19.

      8. Corinaldesi C., Barone G., Marcellini F., Dell'Anno A., Danovaro R. Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Mar. Drugs. 2017, 15 (4), 118.

      9. Dhakal D., Pokhrel A. R., Shrestha B., Sohng J. K. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Front. Microbiol. 2017, V. 8, P. 1106.

      10. Tortorella E., Tedesco P., Palma Esposito F., January G. G., Fani R., Jaspars M., de Pascale D. Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives. Mar. Drugs. 2018, 16 (10), 355.

      11. Casillo A., Lanzetta R., Parrilli M., Corsaro M. M. Exopolysaccharides from Marine and Marine Extremophilic Bacteria: Structures, Properties, Ecological Roles and Applications. Mar. Drugs. 2018, 16 (2), 69.

      12. Blunt J. W., Carroll A. R., Copp B. R., Davis R. A., Keyzers R. A., Prinsep M. R. Marine natural products. Nat. Prod. Rep. 2018, 35 (1), 8−53.

      13. Khalifa S. A. M., Elias N., Farag M. A., Chen L., Saeed A., Hegazy M. E. F., Moustafa M. S., El-Wahed A. A., Al-Mousawi S. M., Musharraf S. G., Chang F. R., Iwasaki A., Suenaga K., Alajlani M., Göransson U., El-Seedi H. R. Marine Natural Products: A Source of Novel Anticancer Drugs. Mar. Drugs. 2019, 17 (9), 491.

      14. Kasanah N., Triyanto T. Bioactivities of Halometabolites from Marine Actinobacteria. Biomolecules. 2019, 9 (6), 225.

      15. Karpiński T. M. Marine Macrolides with Antibacterial and/or Antifungal Activity. Mar. Drugs. 2019, 17 (4), 241.

      16. Birolli W. G., Lima R. N., Porto A. L. M. Applications of Marine-Derived Microorganisms and Their Enzymes in Biocatalysis and Biotransformation, the Underexplored Potentials. Front. Microbiol. 2019, V. 10, P. 1453.

      17. Barzkar N., Tamadoni Jahromi S., Poorsaheli H. B., Vianello F. Metabolites from Marine Microorganisms, Micro, and Macroalgae: Immense Scope for Pharmacology. Mar. Drugs. 2019, 17 (8), 464.

      18. Carroll A. R., Copp B. R., Davis R. A., Keyzers R. A., Prinsep M. R. Marine natural products. Nat. Prod. Rep. 2019, 36 (1), 122–173.

      19. De Almeida D. G., Soares Da Silva R. C., Luna J. M., Rufino R. D., Santos V. A., Banat I. M., Sarubbo L. A. Biosurfactants: promising molecules for petroleum biotechnology advances. Front. Microbiol. 2016, V. 7, P. 1718.

      20. Vecino X., Rodríguez-López L., Ferreira D., Cruz J. M., Moldes A. B., Rodrigues L. R. Bioactivity of glycolipopeptide cell-bound biosurfactants against skin pathogens. Int. J. Biol. Macromol. 2018, V. 109, P. 971−979.

      21. Naughton P. J., Marchant R., Naughton V., Banat I. M. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J. Appl. Microbiol. 2019, 27 (1), 12−28.

      22. Marzban A., Ebrahimipour G., Danesh A. Bioactivity of a Novel Glycolipid Produced by a Halophilic Buttiauxella sp. and Improving Submerged Fermentation Using a Response Surface Method. Molecules. 2016, 21 (10).

      23. Dusane D. H., Pawar V. S., Nancharaiah Y. V., Venugopalan V. P., Kumar A. R., Zinjarde S. S. Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling. 2011, 27 (6), 645–654.

      24. Hamza F., Kumar A. R., Zinjarde S. Coculture induced improved production of biosurfactant by Staphylococcus lentus SZ2: Role in protecting Artemia salina against Vibrio harveyi. Enzyme Microb. Technol. 2018, V. 114, P. 33−39.

      25. Balan S. S., Mani P., Kumar C. G., Jayalakshmi S. Structural characterization and biological evaluation of Staphylosan (dimannooleate), a new glycolipid surfactant produced by a marine Staphylococcus saprophyticus SBPS-15. Enzyme Microb. Technol. 2019, V. 120, P. 1‒7.

      26. Manivasagan P., Sivasankar P., Venkatesan J., Sivakumar K., Kim S. K. Optimization, production and characterization of glycolipid biosurfactant from the marine actinobacterium, Streptomyces sp. MAB36. Bioprocess Biosyst. Eng. 2014, 37 (5), 783–797.

      27. Wang W., Cai B., Shao Z. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3. Front. Microbiol. 2014, V. 5, P. 711.

      28. Hu X., Wang C., Wang P. Optimization and characterization of biosurfactant production from marine Vibrio sp. strain 3B-2. Front Microbiol. 2015, V. 6, P. 976.

      29. Roy S., Chandni S., Das I., Karthik L., Kumar G., Bhaskara Rao K. V. Aquatic model for engine oil degradation by rhamnolipid producing Nocardiopsis VITSISB. 3 Biotech. 2015, 5 (2), 153–164.

      30. Dhasayan A., Kiran G. S., Selvin J. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery. Appl. Biochem. Biotechnol. 2014, 174 (7), 2571–2584.

      31. Luepongpattana S., Thaniyavarn J., Morikawa M. Production of massoia lactone by Aureobasidium pullulans YTP6-14 isolated from the Gulf of Thailand and its fragrant biosurfactant properties. J. Appl. Microbiol. 2017, 123 (6), 1488−1497.

      32. White D. A., Hird L. C., Ali S. T. Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J. Appl. Microbiol. 2013, 115 (3), 744–755.

      33. Santos D. K., Rufino R. D., Luna J. M., Santos V. A., Sarubbo L. A. Biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016, 17 (3), 401.

      34. Mani P., Sivakumar P., Balan S. S. Economic Production and Oil Recovery Efficiency of a Lipopeptide Biosurfactant from a Novel Marine Bacterium Bacillus simplex. Achiev. Life Sci. 2016, 10 (1), 102–110.

      35. Hentati D., Chebbi A., Hadrich F., Frikha I., Rabanal F., Sayadi S., Manresa A., Chamkha M. Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. Ecotoxicol. Environ. Saf. 2019, V. 167, P. 441–449.

      36. Vilela W. F., Fonseca S. G., Fantinatti-Garboggini F., Oliveira V. M., Nitschke M. Production and properties of a surface-active lipopeptide produced by a new marine Brevibacterium luteolum strain. Appl. Biochem. Biotechnol. 2014, 174 (6), 2245–2256.

      37. Kiran G. S., Priyadharsini S., Sajayan A., Priyadharsini G. B., Poulose N., Selvin J. Production of Lipopeptide Biosurfactant by a Marine Nesterenkonia sp. and Its Application in Food Industry. Front. Microbiol. 2017, V. 8, P. 1138.

      38. Janek T., Krasowska A., Radwańska A., Łukaszewicz M. Lipopeptide biosurfactant pseudofactin II induced apoptosis of melanoma A 375 cells by specific interaction with the plasma membrane. PLoS One. 2013, 8 (3), e57991.

      39. Balan S. S., Kumar C. G., Jayalakshmi S. Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from Gulf of Mannar: Purification, characterization and its biological evaluation. Microbiol. Res. 2017, V. 194, P. 1–9.

      40. Deng M. C., Li J., Hong Y. H., Xu X. M., Chen W. X., Yuan J. P., Peng J., Yi M., Wang J. H. Characterization of a novel biosurfactant produced by marine hydrocarbon-degrading bacterium Achromobacter sp. HZ01. J. Appl. Microbiol. 2016, 120 (4), 889–899.

      41. Lawrance A., Balakrishnan M., Joseph T. C., Sukumaran D. P., Valsalan V. N., Gopal D., Ramalingam K. Functional and molecular characterization of a lipopeptide surfactant from the marine sponge-associated eubacteria Bacillus licheniformis NIOT-AMKV06 of Andaman and Nicobar Islands, India. Mar. Pollut. Bull. 2014, 82 (1−2), 76–85.

      42. Janek T., Łukaszewicz M., Rezanka T., Krasowska A. Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour. Technol.  2010, 101 (15), 6118–6123.

      43. Janek T., Łukaszewicz M., Krasowska A. Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol. 2012, V. 12, P. 24.

      44. Raddadi N., Giacomucci L., Totaro G., Fava F. Marinobacter sp. from marine sediments produce highly stable surface-active agents for combatting marine oil spills. Microb. Cell Fact. 2017, 16 (1), 186.

      45. Saggese A., Culurciello R., Casillo A., Corsaro M. M., Ricca E., Baccigalupi L. A Marine Isolate of Bacillus pumilus Secretes a Pumilacidin Active against Staphylococcus aureus. Mar. Drugs. 2018, 16 (6), 180.

      46. Ma Z., Hu J. Plipastatin A1 produced by a marine sediment-derived Bacillus amyloliquefaciens SH-B74 contributes to the control of gray mold disease in tomato. 3 Biotech. 2018, 8 (2), 125.

      47. Twigg M. S., Tripathi L., Zompra A., Salek K., Irorere V. U., Gutierrez T., Spyroulias G. A., Marchant R., Banat I. M. Identification and characterisation of short chain rhamnolipid production in a previously uninvestigated, non-pathogenic marine pseudomonad. Appl. Microbiol. Biotechnol. 2018, 102 (19), 8537−8549.

      48. Du J., Zhang A., Zhang X., Si X., Cao J. Comparative analysis of rhamnolipid congener synthesis in neotype Pseudomonas aeruginosa ATCC 10145 and two marine isolates. Bioresour. Technol. 2019, V. 286, P. 121380.

      49. Wu S., Liu G., Zhou S., Sha Z., Sun C. Characterization of Antifungal Lipopeptide Biosurfactants Produced by Marine Bacterium Bacillus sp. CS30. Mar. Drugs. 2019, 17 (4), 199.

      50. Kubicki S., Bollinger A., Katzke N., Jaeger K. E., Loeschcke A., Thies S. Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications. Mar. Drugs. 2019, 17 (7), 408.

      51. Jasti L. S., Dola S. R., Fadnavis N. W., Addepally U., Daniels S., Ponrathnam S. Co-immobilized glucose oxidase and β-galactosidase on bovine serum albumin coated allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymer as a biosensor for lactose determination in milk. Enzyme Microb. Technol. 2014, V. 64‒65, P. 67−73.

      52. Alikkunju A. P, Sainjan N., Silvester R., Joseph A., Rahiman M., Antony A. C., Kumaran R. C., Hatha M. Screening and Characterization of Cold-Active β-Galactosidase Producing Psychrotrophic Enterobacter ludwigii from the Sediments of Arctic Fjord. Appl. Biochem. Biotechnol. 2016, 180 (3), 477−490.

      53. Ghosh M., Pulicherla K. K., Rekha V. P., Raja P. K., Sambasiva Rao K. R. Cold active β-galactosidase from Thalassospira sp. 3SC-21 to use in milk lactose hydrolysis: a novel source from deep waters of Bay-of-Bengal. World J. Microbiol. Biotechnol. 2012, 28 (9), 2859−2869.

      54. Nam E., Ahn J. Antarctic marine bacterium Pseudoalteromonas sp. KNOUC808 as a source of cold-adapted lactose hydrolyzing enzyme. Braz. J. Microbiol. 2011, 42 (3), 927−936.

      55. Sun J., Yao C., Wang W., Zhuang Z., Liu J., Dai F., Hao J. Cloning, Expression and Characterization of a Novel Cold-adapted β-galactosidase from the Deep-sea Bacterium Alteromonas sp. ML52. Mar. Drugs. 2018, 16 (12), 469.

      56. Li S., Zhu X., Xing M. A New β-Galactosidase from the Antarctic Bacterium Alteromonas sp. ANT48 and Its Potential in Formation of Prebiotic Galacto-Oligosaccharides. Mar. Drugs. 2019, 17 (11), 599.

      57. Bruno S., Coppola D., di Prisco G., Giordano D., Verde C. Enzymes from Marine Polar Regions and Their Biotechnological Applications. Mar. Drugs. 2019, 17 (10), 544.

      58. Jiang T., Huang M., He H., Lu J., Zhou X., Cai M., Zhang Y. Bioprocess exploration for thermostable α-amylase production of a deep-sea thermophile Geobacillus sp. in high-temperature bioreactor. Prep. Biochem. Biotechnol. 2016, 46 (6), 620−627.

      59. Uttatree S., Charoenpanich J. Purification and characterization of a harsh conditions-resistant protease from a new strain of Staphylococcus saprophyticus. Agric. Nat. Resour. 2018, V. 52, P. 16–23.

      60. Yagi H., Fujise A., Itabashi N., Ohshiro T. Purification and characterization of  a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown alga. Biosci. Biotechnol. Biochem. 2016, 80 (12), 2338−2346.

      61. Zhu B., Ni F., Sun Y., Yao Z. Expression and characterization of a new heat-stable endo-type alginate lyase from deep-sea bacterium Flammeovirga sp. NJ-04. Extremophiles. 2017, 21 (6), 1027−1036.

      62. Zhu B. W., Sun Y., Ni F., Ning L. M., Yao Z. Characterization of a new endo-type alginate lyase from Vibrio sp. NJU-03. Int. J. Biol. Macromol. 2018, V. 108, P. 1140–1147.

      63. Zhu X. Y., Li X. Q., Shi H., Zhou J., Tan Z. B., Yuan M. D., Yao P.,  Liu X. Characterization of a novel alginate lyase from marine bacterium Vibrio furnissii H1. Mar. Drugs. 2018, 16 (1), 30.

      64. Gomaa M., Fawzy M. A., Hifney A. F., Abdel-gawad K. M. Optimization of enzymatic saccharification of fucoidan and alginate from brown seaweed using fucoidanase and alginate lyase from the marine fungus Dendryphiella arenaria. J. Appl. Phycol. 2018, V. 31, P. 1955–1965.

      65. Leema Roseline T., Sachindra N. M. Characterization of extracellular agarase production by Acinetobacter junii PS12B, isolated from marine sediment. Biocatal. Agri. Biotechnol. 2016, V. 6, P. 219–226.

      66. Leema Roseline T., Sachindra N. M. Purification and Characterization of Agarase from Marine Bacteria Acinetobacter sp. PS12B and Its Use for Preparing Bioactive  Hydrolysate from Agarophyte Red Seaweed Gracilaria verrucosa. Appl. Biochem. Biotechnol. 2018, 186 (1), 66−84.

      67. Gomaa M., Hifney A. F., Fawzy M. A., Abdel-Gawad K. M. Statistical optimization of culture variables for enhancing agarase production by Dendryphiella arenaria utilizing Palisada perforata (Rhodophyta) and enzymatic saccharification of the macroalgal biomass. Mar. Biotechnol. 2017, V. 19, P. 592–600.

      68. Dos Santos J. A., Vieira J. M. F., Videira A., Meirelles L. A., Rodrigues A., Taniwaki M. H., Sette L. D. Marine-derived fungus Aspergillus cf. tubingensis LAMAI 31: a new genetic resource for xylanase production. AMB Express. 2016, 6 (1), 25.

      69. Balabanova L., Slepchenko L., Son O., Tekutyeva L. Biotechnology Potential of Marine Fungi Degrading Plant and Algae Polymeric Substrates. Front. Microbiol. 2018, V. 9, P. 1527.

      70. Passarini M. R., Ottoni C. A., Santos C., Lima N., Sette L. D. Induction, expression and characterisation of laccase genes from the marine-derived fungal strains Nigrospora sp. CBMAI 1328 and Arthopyrenia sp. CBMAI 1330. AMB Express. 2015, V. 5, P. 19.

      71. Cardozo F. A., Gonzalez J. M., Feitosa V. A., Pessoa A., Rivera I. N. G. Bioconversion of α-chitin into N-acetyl-glucosamine using chitinases produced by marine-derived Aeromonas caviae isolates. World J. Microbiol. Biotechnol. 2017, 33 (11), 201.

      72. Sun M. L., Liu S. B., Qiao L. P., Chen X. L., Pang X., Shi M., Zhang X. Y., Qin Q. L., Zhou B. C., Zhang Y. Z., Xie B. B. A novel exopolysaccharide from deep-sea bacterium Zunongwangia profunda SM-A87: low-cost fermentation, moisture retention, and antioxidant activities. Appl. Microbiol. Biotechnol. 2014, 98 (17), 7437–7445.

      73. Pirog T. P., Voronenko A. A., Ivakhniuk M. O. Non-traditional producers of microbial exopolysaccharides. Biotechnol. acta. 2018, 11 (4), 5−27.

      74. Mahgoub A. M., Mahmoud M. G., Selim M. S., EL Awady M. E. Exopolysaccharide from Marine Bacillus velezensis MHM3 Induces Apoptosis of Human Breast Cancer MCF-7 Cells through a Mitochondrial Pathway. Asian Pac. J. Cancer Prev. 2018, 19 (7), 1957−1963.

      75. El-Newary S. A., Ibrahim A. Y., Asker M. S., Mahmoud M. G., El Awady M. E. Production, characterization and biological activities of acidic exopolysaccharide from marine Bacillus amyloliquefaciens 3MS 2017. Asian Pac. J. Trop. Med. 2017, 10 (7), 652−662.

      76. Marx J. G., Carpenter S. D., Deming J. W. Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can. J. Microbiol. 2009, 55 (1), 63–72.

      77. Sathiyanarayanan G., Yi D.-H., Bhatia S. K., Kim J.-H., Seo H. M, Kim Y.-G., Park S.-H., Jeon D., Jung S., Jung J.-Y., Lee Y. K., Yang Y. H. Exopolysaccharide from psychrotrophic Arctic glacier soil bacterium Flavobacterium sp. ASB 3-3 and its potential applications. RSC Adv. 2015, 5 (103), 84492–84502.

      78. Wang C., Fan Q., Zhang X., Lu X., Xu Y., Zhu W., Zhang J., Hao W., Hao L. Isolation, Characterization, and Pharmaceutical Applications of an Exopolysaccharide from Aerococcus uriaeequi. Mar. Drugs. 2018, 16 (9), 337.

      79. Zhang Z., Cai R., Zhang W., Fu Y., Jiao N. A Novel Exopolysaccharide with Metal Adsorption Capacity Produced by a Marine Bacterium Alteromonas sp. JL2810. Mar. Drugs. 2017, 15 (6), 175.

      80. Arun J., Selvakumar S., Sathishkumar R., Moovendhan M., Ananthan G., Maruthiah T., Palavesam A. In vitro antioxidant activities of an exopolysaccharide from a salt pan bacterium Halolactibacillus miurensis. Carbohydr. Polym. 2017, V. 155, P. 400−406.

      81. Spanò A., Laganà P., Visalli G., Maugeri T. L., Gugliandolo C. In Vitro Antibiofilm Activity of an Exopolysaccharide from the Marine Thermophilic Bacillus licheniformis T14. Curr. Microbiol. 2016, 72 (5), 518−528.

      82. Carrión O., Delgado L., Mercade E. New emulsifying and cryoprotective exopolysaccharide from Antarctic Pseudomonas sp. ID1. Carbohydr. Polym. 2015, V. 117, P. 1028–1034.

      83. Wu S., Liu G., Jin W., Xiu P., Sun C. Antibiofilm and Anti-Infection of a Marine Bacterial Exopolysaccharide Against Pseudomonas aeruginosa. Front. Microbiol. 2016, V. 7, P. 102.

      84. Spanò A., Gugliandolo C., Lentini V., Maugeri T. L., Anzelmo G., Poli A., Nicolaus B. A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea Island (Italy). Curr. Microbiol. 2013, 67 (1), 21−29.

      85. Gugliandolo C., Spanò A., Lentini V., Arena A., Maugeri T. L. Antiviral and immunomodulatory effects of a novel bacterial exopolysaccharide of shallow marine vent origin. J. Appl. Microbiol. 2014, 116 (4), 1028−1034.

      86. Priyanka P., Arun A. B., Rekha P. D. Sulfated exopolysaccharide produced by Labrenzia sp. PRIM-30, characterization and prospective applications. Int. J. Biol. Macromol. 2014, V. 69, P. 290−295.

      87. Xu L., Meng W., Cao C., Wang J., Shan W., Wang Q. Antibacterial and antifungal compounds from marine fungi. Mar. Drugs. 2015, 13 (6), 3479−3513.

      88. Mayer A. M. S., Guerrero A. J., Rodríguez A. D., Taglialatela-Scafati O., Nakamura F., Fusetani N. Marine Pharmacology in 2014‒2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar. Drugs. 2019, 18 (1), 5.

      89. Du F. Y., Zhang P., Li X. M., Li C. S., Cui C. M., Wang B. G. Cyclohexadepsipeptides of the isaridin class from the marine-derived fungus Beauveria felina EN-135. J. Nat. Prod. 2014, 77 (5), 1164−1169.

      90. Sun K., Li Y., Guo L., Wang Y., Liu P., Zhu W. Indole diterpenoids and isocoumarin  from the fungus, Aspergillus flavus, isolated from the prawn. Penaeus vannamei. Mar. Drugs. 2014, 12 (7), 3970−3981.

      91. Meng L. H., Zhang P., Li X. M., Wang B. G. Penicibrocazines A-E, five new sulfide diketopiperazines from the marine-derived endophytic fungus Penicillium brocae. Mar Drugs. 2015, 13 (1), 276−287.

      92. Khamthong N., Rukachaisirikul V., Phongpaichit S., Preedanon S., Sakayaroj J. An antibacterial cytochalasin derivative from the marine-derived fungus Diaporthaceae sp. PSU-SP2/4. Phytochem. Lett. 2014, V. 10, P. 5−9.

      93. Wu B., Oesker V., Wiese J., Malien S., Schmaljohann R., Imhoff J. F. Spirocyclic drimanes from the marine fungus Stachybotrys sp. strain MF347. Mar. Drugs. 2014, 12 (4), 1924−1938.

      94. Wu B., Oesker V., Wiese J., Schmaljohann R., Imhoff J. F. Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106. Mar. Drugs. 2014, 12 (3), 1208−1219.

      95. Liu X. H., Miao F. P., Liang X. R., Ji N. Y. Ergosteroid derivatives from an algicolous strain of Aspergillus ustus. Nat. Prod. Res. 2014, 28 (15), 1182−1186.

      96. Yao Q., Wang J., Zhang X., Nong X., Xu X., Qi S. Cytotoxic polyketides from the deep-sea-derived fungus Engyodontium album DFFSCS021. Mar. Drugs. 2014, 12 (12), 5902−5915.

      97. Song F., Ren B., Chen C., Yu K., Liu X., Zhang Y., Yang N., He H., Liu X., Dai H., Zhang L. Three new sterigmatocystin analogues from marine-derived fungus Aspergillus versicolor MF359. Appl. Microbiol. Biotechnol. 2014, 98 (8), 3753−3758.

      98. Han W. B., Lu Y. H., Zhang A. H., Zhang G. F., Mei Y. N., Jiang N., Lei X. X., Song Y. C., Ng S. W., Tan R. X. Curvulamine, a new antibacterial alkaloid incorporating two undescribed units from a Curvularia species. Org. Lett. 2014, 16 (20), 5366−5369.

      99. Bai Z. Q., Lin X., Wang Y., Wang J., Zhou X., Yang B., Liu J., Yang X., Wang Y., Liu Y. New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius. Fitoterapia. 2014, V. 95, P. 194−202.

      100. Fredimoses M., Zhou X., Lin X., Tian X., Ai W., Wang J., Liao S., Liu J., Yang B., Yang X., Liu Y. New prenylxanthones from the deep-sea derived fungus Emericella sp. SCSIO 05240. Mar. Drugs. 2014, 12 (6), 3190−3202.

      101. Cao D. T., Tran V. H., Vu V. N., Mai H. D. T., Le T. H. M., Vu T. Q., Nguyen H. H., Chau V. M., Pham V. C. Antimicrobial metabolites from a marine-derived Actinomycete Streptomyces sp. G278. Nat. Prod. Res. 2019, 33 (22), 3223−3230.

      102. Akhter N., Liu Y., Auckloo B. N., Shi Y., Wang K., Chen J., Wu X., Wu B. Stress-Driven Discovery of New Angucycline-Type Antibiotics from a Marine Streptomyces pratensis NA-ZhouS1. Mar. Drugs. 2018, 16 (9), 331.

      103. Hu Z., Qin L., Wang Q., Ding W., Chen Z., Ma Z. Angucycline antibiotics and its derivatives from marine-derived actinomycete Streptomyces sp. A6H. Nat. Prod. Res. 2016, 30 (22), 2551−2558.

      104. Li X.-D., Li X., Li X. M., Xu G. M., Zhang P., Meng L. H., Wang B. G. Tetranorlabdane diterpenoids from the deep sea sediment-derived fungus Aspergillus wentii SD-310. Planta Med. 2016, 82 (9−10), 877−881.

      105. Xu R., Xu G. M., Li X. M., Li C. S., Wang B. G. Characterization of a newly isolated marine fungus Aspergillus dimorphicus for optimized production of the anti-tumor agent wentilactones. Mar. Drugs. 2015, 13 (11), 7040–7054.

      106. Lv C., Hong Y., Miao L., Li C., Xu G., Wei S., Wang B., Huang C., Jiao B. Wentilactone A as a novel potential antitumor agent induces apoptosis and G2/M arrest of human lung carcinoma cells, and is mediated by HRas-GTP accumulation to excessively activate the Ras/Raf/ERK/p53-p21 pathway. Cell Death Dis. 2013, 4 (12), e952.

      107. Zhang Z., Miao L., Lv C., Sun H., Wei S., Wang B., Huang C., Jiao B. Wentilactone B induces G2/M phase arrest and apoptosis via the Ras/Raf/MAPK signaling pathway in human hepatoma SMMC-7721 cells. Cell Death Dis. 2013, 4 (6), e657.

      108. Matsuo H., Nonaka K., Nagano Y., Yabuki A., Fujikura K., Takahashi Y., Оmura S., Nakashima T. New metabolites, sarcopodinols A and B, isolated from deep-sea derived fungal strain Sarcopodium sp. FKJ-0025. Biosci. Biotechnol. Biochem. 2018, 82 (8), 1323–1326.

      109. Meng L. H., Li X. M., Lv C. T., Huang C. G., Wang B. G. Brocazines A-F, cytotoxic bisthiodiketopiperazine derivatives from Penicillium brocae MA-231, an endophytic fungus derived from the marine mangrove plant Avicennia marina. J. Nat. Prod. 2014, 77 (8), 1921–1927.

      110. Lin A., Wu G., Gu Q., Zhu T., Li D. New eremophilane-type sesquiterpenes from an Antarctic deepsea derived fungus, Penicillium sp. PR19 N-1. Arch. Pharm. Res. 2014, 37 (7), 839–844.

      111. Huang J., Xu J., Wang Z., Khan D., Niaz S. I., Zhu Y. H., Lin Y. C., Li J., Liu L. New lasiodiplodins from mangrove endophytic fungus Lasiodiplodia sp. 318. Nat. Prod. Res. 2017, 31 (3), 326–332.

      112. Zhu M., Zhang X., Feng H., Che Q., Zhu T., Gu Q., Li D. Campyridones A–D, pyridone alkaloids from a mangrove endophytic fungus Campylocarpon sp. HDN13-307. Tetrahedron. 2016, V. 72, P. 5679–5683.

      113. Liu H., Zhang L., Chen Y., Li S., Tan G., Sun Z., Pan Q., Ye W., Li H., Zhang W. Cytotoxic pimarane-type diterpenes from the marine sediment-derived fungus Eutypella sp. FS46. Nat. Prod. Res. 2017, 31 (4), 404–410.

      114. Moussa M., Ebrahim W., El-Neketi M., Mаndi A., Kurtаn T., Hartmann R., Lin W., Liu Z., Proksch P. Tetrahydroanthraquinone derivatives from the mangrove-derived endophytic fungus Stemphylium globuliferum. Tetrahedron Lett. 2016, V. 57, P. 4074–4078.

      115. Mishra P. D., Verekar S. A., Deshmukh S. K., Joshi K. S., Fiebig H. H., Kelter G. Altersolanol A: a selective cytotoxic anthraquinone from a Phomopsis sp. Lett. Appl. Microbiol. 2015, 60 (4), 387–391.

      116. Gao X. W., Liu H. X., Sun Z. H., Chen Y. C., Tan Y. Z., Zhang W. M. Secondary metabolites from the deep-sea derived fungus Acaromyces ingoldii FS121. Molecules. 2016, V. 21, P. 371.

      117. Wang J., Wang Z., Ju Z., Wan J., Liao S., Lin X., Zhang T., Zhou X., Chen H., Tu Z., Liu Y. Cytotoxic cytochalasins from marine-derived fungus Arthrinium arundinis. Planta Med. 2015, 81 (2), 160–166.

      118. Liang X., Zhang X. Y., Nong X. H., Wang J., Huang Z. H., Qi S. H. Eight linear peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020. Tetrahedron. 2016, V. 72, P. 3092–3097.

      119. Deshmukh S. K., Gupta M. K., Prakash V., Reddy M. S. Mangrove-associated fungi: a novel source of potential anticancer compounds. J. Fungi (Basel). 2018, 4 (3), 101.


Additional menu

Site search

Site navigation

Home Archive 2020 № 3 PRACTICALLY VALUABLE METABOLITES OF MARINE MICROORGANISMS T. P. Pirog, A. O. Martyniuk, O. I. Skrotska, Т. А. Shevchuk

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
for information: