Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2020 № 3 PRACTICALLY VALUABLE METABOLITES OF MARINE MICROORGANISMS T. P. Pirog, A. O. Martyniuk, O. I. Skrotska, Т. А. Shevchuk
Print PDF

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

Biotechnologia Acta V. 13, No 3, 2020
Р. 5-29, Bibliography 129, English
Universal Decimal Classification: 579.663
https://doi.org/10.15407/biotech13.03.005

PRACTICALLY VALUABLE METABOLITES OF MARINE MICROORGANISMS

T. P. Pirog 1, 2, A. O. Martyniuk 1, O. I. Skrotska 1, Т. А. Shevchuk 2

1 National University of Food Technologies, Kyiv
2 Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv

The review considered the modern literature data on the synthesis by fungi, actinobacteria, and bacteria isolated from marine ecosystems (seawater, bottom sediments, flora and fauna, mangrove biomes, glaciers), practically valuable metabolites. Marine microorganisms synthesize a wide range of practically valuable enzymes (cold-active galactosidase, agarase, alginate lyase, fucoidase, chitinase, etc.), surface-active glyco- and lipopeptides with emulsifying, antimicrobial and antiadhesive activity, as well as secondary metabolites with diverse biological activity (antimicrobial, antitumor, cytotoxic). However, the use of marine producers in biotechnological processes is constrained by their low synthesizing capacity and high costs of biosynthesis (complex nutrient media and expensive carbohydrate substrates). In biotechnology, marine microorganisms can be used as sources of genes encoding the synthesis of new biologically active substances with unique properties, including antimicrobial and antitumor.

Key words: marine fungi, bacteria, biologically active substances.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2020

  • References
    • 1. Kamjam M., Sivalingam P., Deng Z., Hong K. Deep Sea Actinomycetes and Their Secondary Metabolites. Front. Microbiol. 2017, V. 8, P. 760. https://doi.org/10.3389/fmicb.2017.00760

      2. Kamala K., Sivaperumal P. Biomedical Applications of Enzymes from Marine Actinobacteria. Adv. Food Nutr. Res. 2017, V. 80, P. 107−123. https://doi.org/10.1016/bs.afnr.2016.11.002

      3. Subramani R., Sipkema D. Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products. Mar. Drugs. 2019, 17 (5), 249. https://doi.org/10.3390/md17050249

      4. Hasan S., Ansari M. I., Ahmad A., Mishra M. Major bioactive metabolites from marine fungi: A Review. Bioinformation. 2015, 11 (4), 176−181. https://doi.org/10.6026/97320630011176

      5. Jin L., Quan C., Hou X., Fan S. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi. Mar. Drugs. 2016, 14 (4), 76. https://doi.org/10.3390/md14040076

      6. Mahajan P. M., Nayak S., Lele S. S. Fibrinolytic enzyme from newly isolated marine bacterium Bacillus subtilis ICTF-1: media optimization, purification and characterization. J. Biosci. Bioeng. 2012, 113 (3), 307−314. https://doi.org/10.1016/j.jbiosc.2011.10.023

      7. Imhoff J. F. Natural Products from Marine Fungi − Still an Underrepresented Resource. Mar. Drugs. 2016, 14 (1), 19. https://doi.org/10.3390/md14010019

      8. Corinaldesi C., Barone G., Marcellini F., Dell'Anno A., Danovaro R. Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Mar. Drugs. 2017, 15 (4), 118. https://doi.org/10.3390/md15040118

      9. Dhakal D., Pokhrel A. R., Shrestha B., Sohng J. K. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Front. Microbiol. 2017, V. 8, P. 1106. https://doi.org/10.3389/fmicb.2017.01106

      10. Tortorella E., Tedesco P., Palma Esposito F., January G. G., Fani R., Jaspars M., de Pascale D. Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives. Mar. Drugs. 2018, 16 (10), 355. https://doi.org/10.3390/md16100355

      11. Casillo A., Lanzetta R., Parrilli M., Corsaro M. M. Exopolysaccharides from Marine and Marine Extremophilic Bacteria: Structures, Properties, Ecological Roles and Applications. Mar. Drugs. 2018, 16 (2), 69. https://doi.org/10.3390/md16020069

      12. Blunt J. W., Carroll A. R., Copp B. R., Davis R. A., Keyzers R. A., Prinsep M. R. Marine natural products. Nat. Prod. Rep. 2018, 35 (1), 8−53. https://doi.org/10.1039/C7NP00052A

      13. Khalifa S. A. M., Elias N., Farag M. A., Chen L., Saeed A., Hegazy M. E. F., Moustafa M. S., El-Wahed A. A., Al-Mousawi S. M., Musharraf S. G., Chang F. R., Iwasaki A., Suenaga K., Alajlani M., Göransson U., El-Seedi H. R. Marine Natural Products: A Source of Novel Anticancer Drugs. Mar. Drugs. 2019, 17 (9), 491. https://doi.org/10.3390/md17090491

      14. Kasanah N., Triyanto T. Bioactivities of Halometabolites from Marine Actinobacteria. Biomolecules. 2019, 9 (6), 225. https://doi.org/10.3390/biom9060225

      15. Karpiński T. M. Marine Macrolides with Antibacterial and/or Antifungal Activity. Mar. Drugs. 2019, 17 (4), 241. https://doi.org/10.3390/md17040241

      16. Birolli W. G., Lima R. N., Porto A. L. M. Applications of Marine-Derived Microorganisms and Their Enzymes in Biocatalysis and Biotransformation, the Underexplored Potentials. Front. Microbiol. 2019, V. 10, P. 1453. https://doi.org/10.3389/fmicb.2019.01453

      17. Barzkar N., Tamadoni Jahromi S., Poorsaheli H. B., Vianello F. Metabolites from Marine Microorganisms, Micro, and Macroalgae: Immense Scope for Pharmacology. Mar. Drugs. 2019, 17 (8), 464. https://doi.org/10.3390/md17080464

      18. Carroll A. R., Copp B. R., Davis R. A., Keyzers R. A., Prinsep M. R. Marine natural products. Nat. Prod. Rep. 2019, 36 (1), 122–173. https://doi.org/10.1039/C8NP00092A

      19. De Almeida D. G., Soares Da Silva R. C., Luna J. M., Rufino R. D., Santos V. A., Banat I. M., Sarubbo L. A. Biosurfactants: promising molecules for petroleum biotechnology advances. Front. Microbiol. 2016, V. 7, P. 1718. https://doi.org/10.3389/fmicb.2016.01718

      20. Vecino X., Rodríguez-López L., Ferreira D., Cruz J. M., Moldes A. B., Rodrigues L. R. Bioactivity of glycolipopeptide cell-bound biosurfactants against skin pathogens. Int. J. Biol. Macromol. 2018, V. 109, P. 971−979. https://doi.org/10.1016/j.ijbiomac.2017.11.088

      21. Naughton P. J., Marchant R., Naughton V., Banat I. M. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J. Appl. Microbiol. 2019, 27 (1), 12−28. https://doi.org/10.1111/jam.14243

      22. Marzban A., Ebrahimipour G., Danesh A. Bioactivity of a Novel Glycolipid Produced by a Halophilic Buttiauxella sp. and Improving Submerged Fermentation Using a Response Surface Method. Molecules. 2016, 21 (10). https://doi.org/10.3390/molecules21101256

      23. Dusane D. H., Pawar V. S., Nancharaiah Y. V., Venugopalan V. P., Kumar A. R., Zinjarde S. S. Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling. 2011, 27 (6), 645–654. https://doi.org/10.3390/molecules21101256

      24. Hamza F., Kumar A. R., Zinjarde S. Coculture induced improved production of biosurfactant by Staphylococcus lentus SZ2: Role in protecting Artemia salina against Vibrio harveyi. Enzyme Microb. Technol. 2018, V. 114, P. 33−39. https://doi.org/10.1016/j.enzmictec.2018.03.008

      25. Balan S. S., Mani P., Kumar C. G., Jayalakshmi S. Structural characterization and biological evaluation of Staphylosan (dimannooleate), a new glycolipid surfactant produced by a marine Staphylococcus saprophyticus SBPS-15. Enzyme Microb. Technol. 2019, V. 120, P. 1‒7. https://doi.org/10.1016/j.enzmictec.2018.09.008

      26. Manivasagan P., Sivasankar P., Venkatesan J., Sivakumar K., Kim S. K. Optimization, production and characterization of glycolipid biosurfactant from the marine actinobacterium, Streptomyces sp. MAB36. Bioprocess Biosyst. Eng. 2014, 37 (5), 783–797. https://doi.org/10.1007/s00449-013-1048-6

      27. Wang W., Cai B., Shao Z. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3. Front. Microbiol. 2014, V. 5, P. 711. https://doi.org/10.3389/fmicb.2014.00711

      28. Hu X., Wang C., Wang P. Optimization and characterization of biosurfactant production from marine Vibrio sp. strain 3B-2. Front Microbiol. 2015, V. 6, P. 976. https://doi.org/10.3389/fmicb.2015.00976

      29. Roy S., Chandni S., Das I., Karthik L., Kumar G., Bhaskara Rao K. V. Aquatic model for engine oil degradation by rhamnolipid producing Nocardiopsis VITSISB. 3 Biotech. 2015, 5 (2), 153–164. https://doi.org/10.1007/s13205-014-0199-8

      30. Dhasayan A., Kiran G. S., Selvin J. Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery. Appl. Biochem. Biotechnol. 2014, 174 (7), 2571–2584. https://doi.org/10.1007/s12010-014-1209-3

      31. Luepongpattana S., Thaniyavarn J., Morikawa M. Production of massoia lactone by Aureobasidium pullulans YTP6-14 isolated from the Gulf of Thailand and its fragrant biosurfactant properties. J. Appl. Microbiol. 2017, 123 (6), 1488−1497. https://doi.org/10.1111/jam.13598

      32. White D. A., Hird L. C., Ali S. T. Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J. Appl. Microbiol. 2013, 115 (3), 744–755. https://doi.org/10.1111/jam.12287

      33. Santos D. K., Rufino R. D., Luna J. M., Santos V. A., Sarubbo L. A. Biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016, 17 (3), 401. https://doi.org/10.3390/ijms17030401

      34. Mani P., Sivakumar P., Balan S. S. Economic Production and Oil Recovery Efficiency of a Lipopeptide Biosurfactant from a Novel Marine Bacterium Bacillus simplex. Achiev. Life Sci. 2016, 10 (1), 102–110. https://doi.org/10.1016/j.als.2016.05.010

      35. Hentati D., Chebbi A., Hadrich F., Frikha I., Rabanal F., Sayadi S., Manresa A., Chamkha M. Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. Ecotoxicol. Environ. Saf. 2019, V. 167, P. 441–449. https://doi.org/10.1016/j.ecoenv.2018.10.036

      36. Vilela W. F., Fonseca S. G., Fantinatti-Garboggini F., Oliveira V. M., Nitschke M. Production and properties of a surface-active lipopeptide produced by a new marine Brevibacterium luteolum strain. Appl. Biochem. Biotechnol. 2014, 174 (6), 2245–2256. https://doi.org/10.1007/s12010-014-1208-4

      37. Kiran G. S., Priyadharsini S., Sajayan A., Priyadharsini G. B., Poulose N., Selvin J. Production of Lipopeptide Biosurfactant by a Marine Nesterenkonia sp. and Its Application in Food Industry. Front. Microbiol. 2017, V. 8, P. 1138. https://doi.org/10.3389/fmicb.2017.01138

      38. Janek T., Krasowska A., Radwańska A., Łukaszewicz M. Lipopeptide biosurfactant pseudofactin II induced apoptosis of melanoma A 375 cells by specific interaction with the plasma membrane. PLoS One. 2013, 8 (3), e57991.https://doi.org/10.1371/journal.pone.0057991

      39. Balan S. S., Kumar C. G., Jayalakshmi S. Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from Gulf of Mannar: Purification, characterization and its biological evaluation. Microbiol. Res. 2017, V. 194, P. 1–9. https://doi.org/10.1016/j.micres.2016.10.005

      40. Deng M. C., Li J., Hong Y. H., Xu X. M., Chen W. X., Yuan J. P., Peng J., Yi M., Wang J. H. Characterization of a novel biosurfactant produced by marine hydrocarbon-degrading bacterium Achromobacter sp. HZ01. J. Appl. Microbiol. 2016, 120 (4), 889–899. https://doi.org/10.1111/jam.13065

      41. Lawrance A., Balakrishnan M., Joseph T. C., Sukumaran D. P., Valsalan V. N., Gopal D., Ramalingam K. Functional and molecular characterization of a lipopeptide surfactant from the marine sponge-associated eubacteria Bacillus licheniformis NIOT-AMKV06 of Andaman and Nicobar Islands, India. Mar. Pollut. Bull. 2014, 82 (1−2), 76–85.https://doi.org/10.1016/j.marpolbul.2014.03.018

      42. Janek T., Łukaszewicz M., Rezanka T., Krasowska A. Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresour. Technol.  2010, 101 (15), 6118–6123. https://doi.org/10.1016/j.biortech.2010.02.109

      43. Janek T., Łukaszewicz M., Krasowska A. Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol. 2012, V. 12, P. 24. https://doi.org/10.1186/1471-2180-12-24

      44. Raddadi N., Giacomucci L., Totaro G., Fava F. Marinobacter sp. from marine sediments produce highly stable surface-active agents for combatting marine oil spills. Microb. Cell Fact. 2017, 16 (1), 186. https://doi.org/10.1186/s12934-017-0797-3

      45. Saggese A., Culurciello R., Casillo A., Corsaro M. M., Ricca E., Baccigalupi L. A Marine Isolate of Bacillus pumilus Secretes a Pumilacidin Active against Staphylococcus aureus. Mar. Drugs. 2018, 16 (6), 180.
      https://doi.org/10.3390/md16060180

      46. Ma Z., Hu J. Plipastatin A1 produced by a marine sediment-derived Bacillus amyloliquefaciens SH-B74 contributes to the control of gray mold disease in tomato. 3 Biotech. 2018, 8 (2), 125. https://doi.org/10.1007/s13205-018-1144-z

      47. Twigg M. S., Tripathi L., Zompra A., Salek K., Irorere V. U., Gutierrez T., Spyroulias G. A., Marchant R., Banat I. M. Identification and characterisation of short chain rhamnolipid production in a previously uninvestigated, non-pathogenic marine pseudomonad. Appl. Microbiol. Biotechnol. 2018, 102 (19), 8537−8549. https://doi.org/10.1007/s00253-018-9202-3

      48. Du J., Zhang A., Zhang X., Si X., Cao J. Comparative analysis of rhamnolipid congener synthesis in neotype Pseudomonas aeruginosa ATCC 10145 and two marine isolates. Bioresour. Technol. 2019, V. 286, P. 121380. https://doi.org/10.1016/j.biortech.2019.121380

      49. Wu S., Liu G., Zhou S., Sha Z., Sun C. Characterization of Antifungal Lipopeptide Biosurfactants Produced by Marine Bacterium Bacillus sp. CS30. Mar. Drugs. 2019, 17 (4), 199. https://doi.org/10.3390/md17040199

      50. Kubicki S., Bollinger A., Katzke N., Jaeger K. E., Loeschcke A., Thies S. Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications. Mar. Drugs. 2019, 17 (7), 408. https://doi.org/10.3390/md17070408

      51. Jasti L. S., Dola S. R., Fadnavis N. W., Addepally U., Daniels S., Ponrathnam S. Co-immobilized glucose oxidase and β-galactosidase on bovine serum albumin coated allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymer as a biosensor for lactose determination in milk. Enzyme Microb. Technol. 2014, V. 64‒65, P. 67−73. https://doi.org/10.1016/j.enzmictec.2014.07.005

      52. Alikkunju A. P, Sainjan N., Silvester R., Joseph A., Rahiman M., Antony A. C., Kumaran R. C., Hatha M. Screening and Characterization of Cold-Active β-Galactosidase Producing Psychrotrophic Enterobacter ludwigii from the Sediments of Arctic Fjord. Appl. Biochem. Biotechnol. 2016, 180 (3), 477−490. https://doi.org/10.1007/s12010-016-2111-y

      53. Ghosh M., Pulicherla K. K., Rekha V. P., Raja P. K., Sambasiva Rao K. R. Cold active β-galactosidase from Thalassospira sp. 3SC-21 to use in milk lactose hydrolysis: a novel source from deep waters of Bay-of-Bengal. World J. Microbiol. Biotechnol. 2012, 28 (9), 2859−2869. https://doi.org/10.1007/s11274-012-1097-z

      54. Nam E., Ahn J. Antarctic marine bacterium Pseudoalteromonas sp. KNOUC808 as a source of cold-adapted lactose hydrolyzing enzyme. Braz. J. Microbiol. 2011, 42 (3), 927−936. https://doi.org/10.1590/S1517-83822011000300011

      55. Sun J., Yao C., Wang W., Zhuang Z., Liu J., Dai F., Hao J. Cloning, Expression and Characterization of a Novel Cold-adapted β-galactosidase from the Deep-sea Bacterium Alteromonas sp. ML52. Mar. Drugs. 2018, 16 (12), 469. https://doi.org/10.3390/md16120469

      56. Li S., Zhu X., Xing M. A New β-Galactosidase from the Antarctic Bacterium Alteromonas sp. ANT48 and Its Potential in Formation of Prebiotic Galacto-Oligosaccharides. Mar. Drugs. 2019, 17 (11), 599. https://doi.org/10.3390/md17110599

      57. Bruno S., Coppola D., di Prisco G., Giordano D., Verde C. Enzymes from Marine Polar Regions and Their Biotechnological Applications. Mar. Drugs. 2019, 17 (10), 544. https://doi.org/10.3390/md17100544

      58. Jiang T., Huang M., He H., Lu J., Zhou X., Cai M., Zhang Y. Bioprocess exploration for thermostable α-amylase production of a deep-sea thermophile Geobacillus sp. in high-temperature bioreactor. Prep. Biochem. Biotechnol. 2016, 46 (6), 620−627. https://doi.org/10.1080/10826068.2015.1128444

      59. Uttatree S., Charoenpanich J. Purification and characterization of a harsh conditions-resistant protease from a new strain of Staphylococcus saprophyticus. Agric. Nat. Resour. 2018, V. 52, P. 16–23. https://doi.org/10.1016/j.anres.2018.05.001

      60. Yagi H., Fujise A., Itabashi N., Ohshiro T. Purification and characterization of  a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown alga. Biosci. Biotechnol. Biochem. 2016, 80 (12), 2338−2346. https://doi.org/10.1080/09168451.2016.1232154

      61. Zhu B., Ni F., Sun Y., Yao Z. Expression and characterization of a new heat-stable endo-type alginate lyase from deep-sea bacterium Flammeovirga sp. NJ-04. Extremophiles. 2017, 21 (6), 1027−1036. https://doi.org/10.1007/s00792-017-0962-y

      62. Zhu B. W., Sun Y., Ni F., Ning L. M., Yao Z. Characterization of a new endo-type alginate lyase from Vibrio sp. NJU-03. Int. J. Biol. Macromol. 2018, V. 108, P. 1140–1147. https://doi.org/10.1016/j.ijbiomac.2017.10.164

      63. Zhu X. Y., Li X. Q., Shi H., Zhou J., Tan Z. B., Yuan M. D., Yao P.,  Liu X. Characterization of a novel alginate lyase from marine bacterium Vibrio furnissii H1. Mar. Drugs. 2018, 16 (1), 30. https://doi.org/10.3390/md16010030

      64. Gomaa M., Fawzy M. A., Hifney A. F., Abdel-gawad K. M. Optimization of enzymatic saccharification of fucoidan and alginate from brown seaweed using fucoidanase and alginate lyase from the marine fungus Dendryphiella arenaria. J. Appl. Phycol. 2018, V. 31, P. 1955–1965. https://doi.org/10.1007/s10811-018-1685-x

      65. Leema Roseline T., Sachindra N. M. Characterization of extracellular agarase production by Acinetobacter junii PS12B, isolated from marine sediment. Biocatal. Agri. Biotechnol. 2016, V. 6, P. 219–226. https://doi.org/10.1016/j.bcab.2016.04.007

      66. Leema Roseline T., Sachindra N. M. Purification and Characterization of Agarase from Marine Bacteria Acinetobacter sp. PS12B and Its Use for Preparing Bioactive  Hydrolysate from Agarophyte Red Seaweed Gracilaria verrucosa. Appl. Biochem. Biotechnol. 2018, 186 (1), 66−84. https://doi.org/10.1007/s12010-018-2726-2

      67. Gomaa M., Hifney A. F., Fawzy M. A., Abdel-Gawad K. M. Statistical optimization of culture variables for enhancing agarase production by Dendryphiella arenaria utilizing Palisada perforata (Rhodophyta) and enzymatic saccharification of the macroalgal biomass. Mar. Biotechnol. 2017, V. 19, P. 592–600. https://doi.org/10.1007/s10126-017-9778-0

      68. Dos Santos J. A., Vieira J. M. F., Videira A., Meirelles L. A., Rodrigues A., Taniwaki M. H., Sette L. D. Marine-derived fungus Aspergillus cf. tubingensis LAMAI 31: a new genetic resource for xylanase production. AMB Express. 2016, 6 (1), 25. https://doi.org/10.1186/s13568-016-0194-z

      69. Balabanova L., Slepchenko L., Son O., Tekutyeva L. Biotechnology Potential of Marine Fungi Degrading Plant and Algae Polymeric Substrates. Front. Microbiol. 2018, V. 9, P. 1527. https://doi.org/10.3389/fmicb.2018.01527

      70. Passarini M. R., Ottoni C. A., Santos C., Lima N., Sette L. D. Induction, expression and characterisation of laccase genes from the marine-derived fungal strains Nigrospora sp. CBMAI 1328 and Arthopyrenia sp. CBMAI 1330. AMB Express. 2015, V. 5, P. 19. https://doi.org/10.1186/s13568-015-0106-7

      71. Cardozo F. A., Gonzalez J. M., Feitosa V. A., Pessoa A., Rivera I. N. G. Bioconversion of α-chitin into N-acetyl-glucosamine using chitinases produced by marine-derived Aeromonas caviae isolates. World J. Microbiol. Biotechnol. 2017, 33 (11), 201. https://doi.org/10.1007/s11274-017-2373-8

      72. Sun M. L., Liu S. B., Qiao L. P., Chen X. L., Pang X., Shi M., Zhang X. Y., Qin Q. L., Zhou B. C., Zhang Y. Z., Xie B. B. A novel exopolysaccharide from deep-sea bacterium Zunongwangia profunda SM-A87: low-cost fermentation, moisture retention, and antioxidant activities. Appl. Microbiol. Biotechnol. 2014, 98 (17), 7437–7445. https://doi.org/10.1007/s00253-014-5839-8

      73. Pirog T. P., Voronenko A. A., Ivakhniuk M. O. Non-traditional producers of microbial exopolysaccharides. Biotechnol. acta. 2018, 11 (4), 5−27. https://doi.org/10.15407/biotech11.04.005

      74. Mahgoub A. M., Mahmoud M. G., Selim M. S., EL Awady M. E. Exopolysaccharide from Marine Bacillus velezensis MHM3 Induces Apoptosis of Human Breast Cancer MCF-7 Cells through a Mitochondrial Pathway. Asian Pac. J. Cancer Prev. 2018, 19 (7), 1957−1963. https://doi.org/10.22034/APJCP.2018.19.7.1957/

      75. El-Newary S. A., Ibrahim A. Y., Asker M. S., Mahmoud M. G., El Awady M. E. Production, characterization and biological activities of acidic exopolysaccharide from marine Bacillus amyloliquefaciens 3MS 2017. Asian Pac. J. Trop. Med. 2017, 10 (7), 652−662.https://doi.org/10.1016/j.apjtm.2017.07.005

      76. Marx J. G., Carpenter S. D., Deming J. W. Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can. J. Microbiol. 2009, 55 (1), 63–72. https://doi.org/10.1139/W08-130

      77. Sathiyanarayanan G., Yi D.-H., Bhatia S. K., Kim J.-H., Seo H. M, Kim Y.-G., Park S.-H., Jeon D., Jung S., Jung J.-Y., Lee Y. K., Yang Y. H. Exopolysaccharide from psychrotrophic Arctic glacier soil bacterium Flavobacterium sp. ASB 3-3 and its potential applications. RSC Adv. 2015, 5 (103), 84492–84502. https://doi.org/10.1039/C5RA14978A

      78. Wang C., Fan Q., Zhang X., Lu X., Xu Y., Zhu W., Zhang J., Hao W., Hao L. Isolation, Characterization, and Pharmaceutical Applications of an Exopolysaccharide from Aerococcus uriaeequi. Mar. Drugs. 2018, 16 (9), 337. https://doi.org/10.3390/md16090337

      79. Zhang Z., Cai R., Zhang W., Fu Y., Jiao N. A Novel Exopolysaccharide with Metal Adsorption Capacity Produced by a Marine Bacterium Alteromonas sp. JL2810. Mar. Drugs. 2017, 15 (6), 175. https://doi.org/10.3390/md15060175

      80. Arun J., Selvakumar S., Sathishkumar R., Moovendhan M., Ananthan G., Maruthiah T., Palavesam A. In vitro antioxidant activities of an exopolysaccharide from a salt pan bacterium Halolactibacillus miurensis. Carbohydr. Polym. 2017, V. 155, P. 400−406. https://doi.org/10.1016/j.carbpol.2016.08.085

      81. Spanò A., Laganà P., Visalli G., Maugeri T. L., Gugliandolo C. In Vitro Antibiofilm Activity of an Exopolysaccharide from the Marine Thermophilic Bacillus licheniformis T14. Curr. Microbiol. 2016, 72 (5), 518−528. https://doi.org/10.1007/s00284-015-0981-9

      82. Carrión O., Delgado L., Mercade E. New emulsifying and cryoprotective exopolysaccharide from Antarctic Pseudomonas sp. ID1. Carbohydr. Polym. 2015, V. 117, P. 1028–1034. https://doi.org/10.1016/j.carbpol.2014.08.060

      83. Wu S., Liu G., Jin W., Xiu P., Sun C. Antibiofilm and Anti-Infection of a Marine Bacterial Exopolysaccharide Against Pseudomonas aeruginosa. Front. Microbiol. 2016, V. 7, P. 102. https://doi.org/10.3389/fmicb.2016.00102

      84. Spanò A., Gugliandolo C., Lentini V., Maugeri T. L., Anzelmo G., Poli A., Nicolaus B. A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea Island (Italy). Curr. Microbiol. 2013, 67 (1), 21−29. https://doi.org/10.1007/s00284-013-0327-4

      85. Gugliandolo C., Spanò A., Lentini V., Arena A., Maugeri T. L. Antiviral and immunomodulatory effects of a novel bacterial exopolysaccharide of shallow marine vent origin. J. Appl. Microbiol. 2014, 116 (4), 1028−1034. https://doi.org/10.1111/jam.12422

      86. Priyanka P., Arun A. B., Rekha P. D. Sulfated exopolysaccharide produced by Labrenzia sp. PRIM-30, characterization and prospective applications. Int. J. Biol. Macromol. 2014, V. 69, P. 290−295. https://doi.org/10.1016/j.ijbiomac.2014.05.054

      87. Xu L., Meng W., Cao C., Wang J., Shan W., Wang Q. Antibacterial and antifungal compounds from marine fungi. Mar. Drugs. 2015, 13 (6), 3479−3513. https://doi.org/10.3390/md13063479

      88. Mayer A. M. S., Guerrero A. J., Rodríguez A. D., Taglialatela-Scafati O., Nakamura F., Fusetani N. Marine Pharmacology in 2014‒2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar. Drugs. 2019, 18 (1), 5. https://doi.org/10.3390/md18010005

      89. Du F. Y., Zhang P., Li X. M., Li C. S., Cui C. M., Wang B. G. Cyclohexadepsipeptides of the isaridin class from the marine-derived fungus Beauveria felina EN-135. J. Nat. Prod. 2014, 77 (5), 1164−1169. https://doi.org/10.1021/np4011037

      90. Sun K., Li Y., Guo L., Wang Y., Liu P., Zhu W. Indole diterpenoids and isocoumarin  from the fungus, Aspergillus flavus, isolated from the prawn. Penaeus vannamei. Mar. Drugs. 2014, 12 (7), 3970−3981. https://doi.org/10.3390/md12073970

      91. Meng L. H., Zhang P., Li X. M., Wang B. G. Penicibrocazines A-E, five new sulfide diketopiperazines from the marine-derived endophytic fungus Penicillium brocae. Mar Drugs. 2015, 13 (1), 276−287. https://doi.org/10.3390/md13010276

      92. Khamthong N., Rukachaisirikul V., Phongpaichit S., Preedanon S., Sakayaroj J. An antibacterial cytochalasin derivative from the marine-derived fungus Diaporthaceae sp. PSU-SP2/4. Phytochem. Lett. 2014, V. 10, P. 5−9. https://doi.org/10.1016/j.phytol.2014.06.014

      93. Wu B., Oesker V., Wiese J., Malien S., Schmaljohann R., Imhoff J. F. Spirocyclic drimanes from the marine fungus Stachybotrys sp. strain MF347. Mar. Drugs. 2014, 12 (4), 1924−1938. https://doi.org/10.3390/md12041924

      94. Wu B., Oesker V., Wiese J., Schmaljohann R., Imhoff J. F. Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106. Mar. Drugs. 2014, 12 (3), 1208−1219. https://doi.org/10.3390/md12031208

      95. Liu X. H., Miao F. P., Liang X. R., Ji N. Y. Ergosteroid derivatives from an algicolous strain of Aspergillus ustus. Nat. Prod. Res. 2014, 28 (15), 1182−1186. https://doi.org/10.1080/14786419.2014.923996

      96. Yao Q., Wang J., Zhang X., Nong X., Xu X., Qi S. Cytotoxic polyketides from the deep-sea-derived fungus Engyodontium album DFFSCS021. Mar. Drugs. 2014, 12 (12), 5902−5915. https://doi.org/10.3390/md12125902

      97. Song F., Ren B., Chen C., Yu K., Liu X., Zhang Y., Yang N., He H., Liu X., Dai H., Zhang L. Three new sterigmatocystin analogues from marine-derived fungus Aspergillus versicolor MF359. Appl. Microbiol. Biotechnol. 2014, 98 (8), 3753−3758.https://doi.org/10.1007/s00253-013-5409-5

      98. Han W. B., Lu Y. H., Zhang A. H., Zhang G. F., Mei Y. N., Jiang N., Lei X. X., Song Y. C., Ng S. W., Tan R. X. Curvulamine, a new antibacterial alkaloid incorporating two undescribed units from a Curvularia species. Org. Lett. 2014, 16 (20), 5366−5369. https://doi.org/10.1021/ol502572g

      99. Bai Z. Q., Lin X., Wang Y., Wang J., Zhou X., Yang B., Liu J., Yang X., Wang Y., Liu Y. New phenyl derivatives from endophytic fungus Aspergillus flavipes AIL8 derived of mangrove plant Acanthus ilicifolius. Fitoterapia. 2014, V. 95, P. 194−202. https://doi.org/10.1016/j.fitote.2014.03.021

      100. Fredimoses M., Zhou X., Lin X., Tian X., Ai W., Wang J., Liao S., Liu J., Yang B., Yang X., Liu Y. New prenylxanthones from the deep-sea derived fungus Emericella sp. SCSIO 05240. Mar. Drugs. 2014, 12 (6), 3190−3202. https://doi.org/10.3390/md12063190

      101. Cao D. T., Tran V. H., Vu V. N., Mai H. D. T., Le T. H. M., Vu T. Q., Nguyen H. H., Chau V. M., Pham V. C. Antimicrobial metabolites from a marine-derived Actinomycete Streptomyces sp. G278. Nat. Prod. Res. 2019, 33 (22), 3223−3230. https://doi.org/10.1080/14786419.2018.1468331

      102. Akhter N., Liu Y., Auckloo B. N., Shi Y., Wang K., Chen J., Wu X., Wu B. Stress-Driven Discovery of New Angucycline-Type Antibiotics from a Marine Streptomyces pratensis NA-ZhouS1. Mar. Drugs. 2018, 16 (9), 331. https://doi.org/10.3390/md16090331

      103. Hu Z., Qin L., Wang Q., Ding W., Chen Z., Ma Z. Angucycline antibiotics and its derivatives from marine-derived actinomycete Streptomyces sp. A6H. Nat. Prod. Res. 2016, 30 (22), 2551−2558. https://doi.org/10.1080/14786419.2015.1120730

      104. Li X.-D., Li X., Li X. M., Xu G. M., Zhang P., Meng L. H., Wang B. G. Tetranorlabdane diterpenoids from the deep sea sediment-derived fungus Aspergillus wentii SD-310. Planta Med. 2016, 82 (9−10), 877−881. https://doi.org/10.1055/s-0042-102965

      105. Xu R., Xu G. M., Li X. M., Li C. S., Wang B. G. Characterization of a newly isolated marine fungus Aspergillus dimorphicus for optimized production of the anti-tumor agent wentilactones. Mar. Drugs. 2015, 13 (11), 7040–7054. https://doi.org/10.3390/md13117040

      106. Lv C., Hong Y., Miao L., Li C., Xu G., Wei S., Wang B., Huang C., Jiao B. Wentilactone A as a novel potential antitumor agent induces apoptosis and G2/M arrest of human lung carcinoma cells, and is mediated by HRas-GTP accumulation to excessively activate the Ras/Raf/ERK/p53-p21 pathway. Cell Death Dis. 2013, 4 (12), e952. https://doi.org/10.1038/cddis.2013.484

      107. Zhang Z., Miao L., Lv C., Sun H., Wei S., Wang B., Huang C., Jiao B. Wentilactone B induces G2/M phase arrest and apoptosis via the Ras/Raf/MAPK signaling pathway in human hepatoma SMMC-7721 cells. Cell Death Dis. 2013, 4 (6), e657. https://doi.org/10.1038/cddis.2013.182

      108. Matsuo H., Nonaka K., Nagano Y., Yabuki A., Fujikura K., Takahashi Y., Оmura S., Nakashima T. New metabolites, sarcopodinols A and B, isolated from deep-sea derived fungal strain Sarcopodium sp. FKJ-0025. Biosci. Biotechnol. Biochem. 2018, 82 (8), 1323–1326. https://doi.org/10.1080/09168451.2018.1467264

      109. Meng L. H., Li X. M., Lv C. T., Huang C. G., Wang B. G. Brocazines A-F, cytotoxic bisthiodiketopiperazine derivatives from Penicillium brocae MA-231, an endophytic fungus derived from the marine mangrove plant Avicennia marina. J. Nat. Prod. 2014, 77 (8), 1921–1927. https://doi.org/10.1021/np500382k

      110. Lin A., Wu G., Gu Q., Zhu T., Li D. New eremophilane-type sesquiterpenes from an Antarctic deepsea derived fungus, Penicillium sp. PR19 N-1. Arch. Pharm. Res. 2014, 37 (7), 839–844. https://doi.org/10.1007/s12272-013-0246-8

      111. Huang J., Xu J., Wang Z., Khan D., Niaz S. I., Zhu Y. H., Lin Y. C., Li J., Liu L. New lasiodiplodins from mangrove endophytic fungus Lasiodiplodia sp. 318. Nat. Prod. Res. 2017, 31 (3), 326–332. https://doi.org/10.1080/14786419.2016.1239096

      112. Zhu M., Zhang X., Feng H., Che Q., Zhu T., Gu Q., Li D. Campyridones A–D, pyridone alkaloids from a mangrove endophytic fungus Campylocarpon sp. HDN13-307. Tetrahedron. 2016, V. 72, P. 5679–5683. https://doi.org/10.1016/j.tet.2016.07.080

      113. Liu H., Zhang L., Chen Y., Li S., Tan G., Sun Z., Pan Q., Ye W., Li H., Zhang W. Cytotoxic pimarane-type diterpenes from the marine sediment-derived fungus Eutypella sp. FS46. Nat. Prod. Res. 2017, 31 (4), 404–410. https://doi.org/10.1080/14786419.2016.1169418

      114. Moussa M., Ebrahim W., El-Neketi M., Mаndi A., Kurtаn T., Hartmann R., Lin W., Liu Z., Proksch P. Tetrahydroanthraquinone derivatives from the mangrove-derived endophytic fungus Stemphylium globuliferum. Tetrahedron Lett. 2016, V. 57, P. 4074–4078. https://doi.org/10.1016/j.tetlet.2016.07.091

      115. Mishra P. D., Verekar S. A., Deshmukh S. K., Joshi K. S., Fiebig H. H., Kelter G. Altersolanol A: a selective cytotoxic anthraquinone from a Phomopsis sp. Lett. Appl. Microbiol. 2015, 60 (4), 387–391. https://doi.org/10.1111/lam.12384

      116. Gao X. W., Liu H. X., Sun Z. H., Chen Y. C., Tan Y. Z., Zhang W. M. Secondary metabolites from the deep-sea derived fungus Acaromyces ingoldii FS121. Molecules. 2016, V. 21, P. 371. https://doi.org/10.3390/molecules21040371

      117. Wang J., Wang Z., Ju Z., Wan J., Liao S., Lin X., Zhang T., Zhou X., Chen H., Tu Z., Liu Y. Cytotoxic cytochalasins from marine-derived fungus Arthrinium arundinis. Planta Med. 2015, 81 (2), 160–166. https://doi.org/10.1055/s-0034-1383403

      118. Liang X., Zhang X. Y., Nong X. H., Wang J., Huang Z. H., Qi S. H. Eight linear peptides from the deep-sea-derived fungus Simplicillium obclavatum EIODSF 020. Tetrahedron. 2016, V. 72, P. 3092–3097. https://doi.org/10.1016/j.tet.2016.04.032

      119. Deshmukh S. K., Gupta M. K., Prakash V., Reddy M. S. Mangrove-associated fungi: a novel source of potential anticancer compounds. J. Fungi (Basel). 2018, 4 (3), 101.https://doi.org/10.3390/jof4030101



 

Additional menu

Site search

Site navigation

Home Archive 2020 № 3 PRACTICALLY VALUABLE METABOLITES OF MARINE MICROORGANISMS T. P. Pirog, A. O. Martyniuk, O. I. Skrotska, Т. А. Shevchuk

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.