- Details
- Hits: 147
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 2, 2014
https://doi.org/10.15407/biotech7.02.114
Р. 114-117, Bibliography 10, Ukrainian.
Universal Decimal classification: 636.086/087:664.022.3
USING OF SECONDARY PRODUCTS OF RAPESEED PROCESSING IN THE FOOD INDUSTRY
E. A. Raksha-Slusareva1, V. A. Krul1, А. А. Slusarev2
1Tugan-Baranovsky Donetsk National University of Economics and Trade, Ukraine
2Gorky Donetsk National Medical University, Ukraine
When oil and biodiesel are extracted from rapeseed, secondary derived products are formed, which are not used effectively at the moment. The article deals with the problems of possible their use in food industry. During food product preparation for special dietary consumption we used electrophysical (processing by hydroelectropulse) and physical (drying, grinding, steam treatment) processing of raw materials. Through the developed technology for rapeseed cake processing, we received raw materials suitable for use in food industry. On the basis of these raw materials, the "Nutrition product for special dietary consumption “Ripakovyi”" was developed. It is a part of rape seed meal obtained from the seeds with low content of glucosinolates and erucic acid processed by hydroelectropulse dried in the cabinet oven or in the convective dryer, crushed and disinfected based on a developed soft technology for biologically active substances conservation. The production of this product solves the problem of rational utilization of rapeseed meal and diversification of foods for special dietary consumption.
Key words: rapeseed meal processing.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Prokopenko A. A. Rape is perspective. Selsk. vesti. 2005, N 3, Р. 29.
2. Grodzinskii D., Dembnoveckii O., Levchuk O. Horizons domestic bioenergetics. Vіsn. NAN Ukrainy. 2008, N 1, Р. 22–31. (In Ukrainian).
3. Solonnikova N. V., Ksandopulo S. Ju., Prudnikov S. M. Technological properties of rape seeds of new breeding varieties. Izv. VUZov. Pishh. teсhnol. 2005, N 4, Р. 13–15. (In Russian).
4. Zhmyh rapsa — Opportunity to resolve the Ukrainian problems concerning dairy and beef cattle, pigs and poultry with protein deficiency! Feeding Instructions. Available at: http://roychapin.info/?lang=ru&topic=article&id=12 (accessed 28 November 2013). (In Russian).
5. Sauer W., Cichon R., Misir R. Amino acid availability and protein guality of canola and rapessed meal for pigs and rats. J. Anim. Sci. 1982, 54(2), 292–301.
6. Verkerk R., van der Gaag M.S., Dekker M., Jongen W. M. Effects of processing conditions on glucosinolates in cruciferous vegetables. Cancer Lett. 1997, 114(1–2), 193–194.
https://doi.org/10.1016/S0304-3835(97)04661-2
7. Raksha-Sljusareva O. A., Krul V. O., Sarkіsjan L. G. Prospects for the use of protein-lipid complex processing of rapeseed for products enrichment of the functional purpose. Obladnannja ta tehnologії harchovih virobnictv. 2009, N 22, Р. 320–324. (In Ukrainian).
8. Raksha-Sljusareva O. A., Sarkіsian L. G., Vaskevich M. A., Dolgih S. Ja., Sliusarev O. A., Kustov D. Ju., Rusalenko L. V., Liubach V. O., Linnik K. V., The food additive «Rape». Ukraine. Patent 33600, June 25, 2008.
9. Raksha-Sliusareva O. A., Sliusarev O. A., Krul V. O. The study radiomodification effect of food additive «Rape» in experimental studies on animals. Tehnogenna bezpeka. 2009, 116(103), Р. 45–49. (In Ukrainian).
10. Raksha-Sliusareva O. A., Kvasnіkov A. A., Sliusarev O. A., Mishin V. V., Gricenko L. Z., Kustova O. K., Rusalenko L. V. The way of processing of flower pollen and pollen load. Ukraine. Patent 21363, March 15, 2007.
- Details
- Hits: 130
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 2, 2014
https://doi.org/10.15407/biotech7.02.106
Р. 106-113, Bibliography 39, Ukrainian.
Universal Decimal classification: 663.253+577.346:612.015.11:611(018.5+132)
1 Ivan Franko National University of Lviv, Ukraine
2 National Institute for Vine and Wine «Magarach», Ukraine
It is shown that the consumption of natural polyphenolic complex from grape wine in drinking water in the daily dose 2.5 ± 1.1 mg polyphenols/kg body mass of rats during the 10 day before exposure to radiation leads to increased of superoxide dismutase and gluthathione reductase activities in peripheral blood on 24 and 48 hours after full body X-ray irradiation (30 cGy). The of catalase, gluthathione peroxidase activities and the of the reactive thiobarbituric acid substances content in total lysates of peripheral blood within 72 hours after exposure are comparable to those in control rats. Marked decreased of catalase and superoxide dismutase activities at 24, 48 and 24 hours, respectively, was observed after exposure to ionizing radiation and increased content of lipid peroxidation products in all above mentioned time points. The decreased of superoxide dismutase and gluthathione peroxidase activities in lysates of rats aorta at 48 hour and increased content of the reactive thiobarbituric acid substances during 72 hours after radiation exposure were observed. The consumption of polyphenolic complex from wine did not change the superoxide dismutase and catalase activities in lysates of aorta rats treated with ionizing radiation, whereas gluthathione reductase and gluthathione peroxidase activities was increased during 72 hours after radiation influence. The content of TBA reactive substances was significantly decreased in lysates of aorta rats that were exposed to radiation and polyphenols of grape wine, compared with those of animals that were exposed to radiation alone.
Key words: low intensity X-ray, antioxidant enzymes, TBK-positive products, natural polyphenol complex from grape wine.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Baraboy V. A. Bioantioxidants. Kyiv: Kniga plus. 2006, 462 p. (In Russian).
2. Baraboy V. A., Sutkovoy D. A. Oxydative-antioxidant homeostasis in norm and pathology. Kyiv.: Cernobylinterinform. 1997, Part 1, 202 p., Part 2, 220 p. (In Russian).
3. Skulachev V. P. The programmed death phenomena. Mitochondria, cells and organs: role of reactive oxygen species. Sorosovskiy Obrazovatelnyi Zh. 2001, 7(6), 4–10. (In Russian).
4. Baraboy V. A. Mechanisms of stress and peroxide oxidization of lipids. Uspehi sovremennoj biologii. 1991, 6(3), 923–931. (In Russian).
5. Cadenas E., Packer L. Antioxidants in health and disease. Handbook of antioxidants. L. Packer and J. Fuchs (Ed.). N. Y.: Marcel Dekker. 2001, 732 p.
6. Yamaoka K., Edamatsu R., Mori A. Time dependent changes in SOD activities and lipid peroxides levels in organs of rats after low dose X-ray irradiation. J. Radiat. Res. 1991, 32(1), 73.
7. Eken A., Aydin A., Erdem O., Akay C. Induced antioxidant activity in hospital staff occupationally exposed to ionizing radiation. Int. J. Radiat. Biol. 2012, 88(9), 648–653.
https://doi.org/10.3109/09553002.2012.702295
8. Schweitzer K., Benko G., Bohos P. Untersuchungen der Superoxiddismutase (SOD) von humanen Erythrozyten an strahlungsgefahrdeten Arbeitsplatzen. Radiobiol. Radiother. 1985, 26(5), 629–632.
9. Gacko G. G., Mazhul’ L. M., Volyhina V. E. The effect of increased background radiation on lipid peroxidation in the blood of experimental animals. Abstract of the 1st Scientific and Practical Conference, Minsk, Belarus, 26-27 December 1989. (In Russian).
10. Kensuke O., Takao K., Hiroshi T. Activation of antioxidative enzymes induced by low-dose-rate whole body irradiation: adaptive response in terms of initial DNA damage. Radit. Res. 2006, 166(3), 477–478.
11. Petrina L. G. Dynamics of blood enzyme activity of animals exposed by low doses X-ray. Abstracts of the VI Ukrainian Biochemical Congress, Kyiv, Ukraine,12–15 May 1992. (In Ukrainian).
12. Grynevych Yu. P., Lypska A. I., Teleczka S. V., Pospolita V. V. Peroxidation processes in the blood of rats and BMC single input 131I. Abstracts of ХІХ Annual Scientific and Practical Conference of Institute for Nuclear Research of NAS of Ukraine, Kyiv, Ukraine, 24-27 January 2012. (In Ukrainian).
13. Focea R., Nadejde C., Creanga D., Luchian T. Low dose X-ray effects on catalase activity in animal tissue. J. Physics. 2012, V. 398, P. 1–6.
https://doi.org/10.1088/1742-6596/398/1/012032
14. Gudz T. I., Peshkova E. G., Goncharenko E. N. Inhibition of superoxide dismutase activity of linoleic acid hydroperoxide. The effect of ionizing radation on glutathione peroxidase activity of rats tissues. Radiobiologiya. 1982, 22(4), 515-516. (In Russian).
15. Erden M., Bor N. M. Changes of reduced glutathione, glutathione reductase, and glutathione peroxidase after radiation in Guinea pigs. Biochem. Med. 1984, 31(2), 217–227.
https://doi.org/10.1016/0006-2944(84)90026-7
16. Burlakova E. B., Goloshhapov A. N., Gorbunova N. B. Features of the biological effects of irradiation in low doses. Radiobiologiya. 1996, 36(4), 610–623. (In Russian).
17. Shrikhande A. J. Wine by-products with health benefits. Food Res. Int. 2000, V. 33, P. 469–474.
18. Brenna O. V., Pagliarini E. Multivariate analysis of antioxidant power and polyphenolic composition in red wines. J. Agric. Food. Chem. 2001, V. 49, Р. 4841–4844.
19. Chun O. K., Kim D. O., Lee C. Y. Superoxide radical scavenging activity of the major polyphenols in fresh plums. Agric. Food. Chem. 2003, V. 31, Р. 8067–8072.
20. Dohadwala M. M., Vita J. A. Grapes and cardiovascular disease. J. Nutrit. 2009,139(9), 1788–1793.
21. Shao Z. H., Wojcik K. R., Dossumbekova A., Hsu C., Mehendale S. R., Li C. Q., Qin Y., Sharp W. W., Chang W. T., Hamann K. J., Yuan C. S., Hoek T. L. Grape seed proanthocyanidins protect cardiomyocytes from ischemia and reperfusion injury via Akt-NOS signaling. J. Cell Biochem. 2009,107(4), 697–705.
22. Silva R. C., Rigaud J., Cheynier V., Chemina A. Procyanidin dimers and trimers from grape seeds. Phytochemistry. 1991, V. 30, P. 1259–1264.
23. Mitjans M., Del Campo J., Abajo C., Martinez V., Selga A., Lozano C., Torres J. L., Vinardell M. P. Immunomodulatory activity of a new family of antioxidants obtained from grape polyphenols. J. Agric. Food Chem. 2004, 52(24), 7297–7299.
https://doi.org/10.1021/jf049403z
24. Chevari S., Andyal T. D., Shtirenger D. Determination of the antioxidant properties of blood and their diagnostic value in old age. Lab. delo. 1991, 10, P. 9–13. (In Russian).
25. Korolyuk M. A., Ivanova I. G., Mayorova I. G. Method for determination of the catalase activity. Lab. delo. 1988, V. 1, P. 16–18. (In Russian).
26. Moin V. M. A simple and specific method for determination of the glutathione peroxidase activity in erythrocytes. Lab. delo. 1986, V. 12, P. 124–126. (In Russian).
27. Goldberg D. M., Spooner R. J., Bergmeyer H. U. Glutathione reductase. Methods of Enzymatic Analysis, 3rd еd. Weinheim. Verlag Chemie. 1983, P. 258–265.
28. Timirbulatov R. A., Selezneva E. I. A method for increasing intensity of free radical oxidation of lipid-containing blood components and its diagnostic value. Lab. delo. 1981, V. 4, P. 209–211. (In Russian).
29. Lowri O. H., Rosenbraugh M. J., Pori A. L. Protein measurement with the Folin phenol reagent. Biol. Chem. 1951, 193(1), 265–275.
30. Dubinina E. E., Shugaley I. V. Oxidative modification of proteins. Uspehi sovremennoj biologii. 1993, 113(1), 71–81. (In Russian).
31. Baud O., Green A. E., Li J., Wang H., Volge J. J., Rosenberg P. A. Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J. Neurosci. 2004, 24(7), 1531–1540.
https://doi.org/10.1523/JNEUROSCI.3989-03.2004
32. Moridani M. Y., Scobie H., Jamshidzadeh A., Salehi P., O’Brien P. J. Caffeic acid, chlorogenic acid, and dihydrocaffeic fcid metabolism: glutathione conjugate formation. Drug Metab. Dispos. 2001, V. 29, P. 1432–1439.
33. Awad H. M., Boersma M. G., Vervoort J., Rietjens I. M. Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts. Arch. Biochem. Biophys. 2000, V. 378, P. 224–233.
https://doi.org/10.1006/abbi.2000.1832
34. Awad H. M., Boersma M. G., Boeren S., Van Bladeren P. J., Vervoort J., Rietiens I. M. Quenching of quercetin quinone/quinone methides by different thiolate scavengers: stability and reversibility of conjugate formation. Chem. Res. Toxicol. 2003, V. 16, P. 822–831.
https://doi.org/10.1021/tx020079g
35. Stocker R., Keaney G. F. Role of oxidative modifications in atherosclerosis. Phisiol. Rev. 2004, V. 4, P. 1381–1478.
https://doi.org/10.1152/physrev.00047.2003
36. Lakshmi S. V., Padmaja G., Kuppusamy P., Kutala V. K. Oxidative stress in cardiovascular disease. Ind. J. Biochem. Biophys. 2009, 46(6), 421–440.
37. Fernandez-Pachon M. S., Berna G., Otaolaurruchi E., Troncoso A., Martin F., Garcia- Parrilla C. Changes in antioxidant endogenous enzymes (activity and gene expression levels) after repeated red wine intake. J. Agric. Food Chem. 2009, 57(15), 6578–6583.
https://doi.org/10.1021/jf901863w
38. Koren E., Koren R., Ginsburg I. Polyphenols enhance total oxidant-scavenging capacities of human blood by binding to red blood cells. Exp. Biol. Med. 2010, 235(6), 689–699.
https://doi.org/10.1258/ebm.2010.009370
39. Gajdusek C., Onoda K., London S., Jonson M., Monison R., Mayberg M. Early molecular changes in irradiated aortic endothelium. J. Cell Physiol. 2001, 188(1), 8–23.
https://doi.org/10.1002/jcp.1091
- Details
- Hits: 208
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 2, 2014
https://doi.org/10.15407/biotech7.02.092
Р. 92-105, Bibliography 52, English.
Universal Decimal classification: 616.379-008.64
O. A. Akinloye1, E. A. Balogun2, S. O. Omotainse1, O. O.Adeleye1
1Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
2Department of Veterinary Pathology, Federal University of Agriculture, Abeokuta, Nigeria
The study was aimed to investigate some untoward effects that could be associated with the use of P. nitida as hypoglycemic agent using some biochemical and histological evidences.
The antioxidant property of the plant was determined by using 1, 1-diphenyl-2-picrylhydrazyl radical scavenging activity. Biochemical studies in plasma using determining the testes such as blood glucose, alanine and aspartate aminotransferases, gamma glutamyl transferase activities, electrolytes (sodium, potassium and bicarbonate, lipid peroxidation levels, haematological parameters (red blood cell and whole blood cell, platelets, and lymphocyte counts), blood glucose level, lipid profile, and also liver and kidney function tests were performed. Histopathological examinations of the liver, kidney and pancreas were done following the standard Heamatoxylin and Eosin staining method.
Methanol extract of the seeds has the highest antioxidant level (36.73%), indicating higher free radical scavenging activity; followed by aqueous extract (19.36%) and coconut water extract (4.09%). There was significant reduction (P<0.05) in blood glucose of all the treated rats at the end of the experiment (ranging from 55.59% to 41.66%). Significant increase (P<0.05) in body weights of the treated rats were also observed at the end of the treatment (ranging from 9.26% to 38.89%). There was a significant (P<0.05) increase in the hematological parameters in all the extract treated groups. There was also significant decrease (P<0.05) in the lipid profiles of the treated groups. Plasma studied enzymes activities decreased in all treated groups. Ionoregulatory disturbances observed included hyperkalemia and hypernatremia in all the treated groups but were reduced significantly (P<0.05) at the end of the treatment. Urea and bicarbonate concentrations and also of lipid peroxidation level decreased significantly in all the groups. The histopathological studies revealed that the extracts were unable to ameliorate some observable pathologic conditions associated with induced diabetic tissues. Although, diabetes mellitus have been reported to be associated with varied histological changes in different organs, in this study, histological examinations of the pancreas of the treated and untreated groups showed varying degree of degenerations but the extent of severity in the lesions were more pronounced in the extract treated groups. In this relation the obtained results of this study which revealed the hypoglycemic and antioxidant potentials of Picralima nitida seed extracts for the treatment of diabetes mellitus should be taken with caution in administering the P.nitida seed extract as an hypoglycemic agent.
Key words: Picralima nitida, diabetes mellitus, biochemical, histological evidences.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Mohammed A., Dawud F. A., Kyari, H., Abdullahi M. Antidiabetic action of the aqueous extract of Ocimum suave in alloxan – induced diabetic rats. Afr. J. Biotechnol. 2012 11(38), 9243–9247.
2. Lubert S. Metabolic derangement in diabetes result from relative insulin insufficient and glucogen excess. Intergration of metabolism. Biochemistry. 1995, 4th ed., P. 780.
3. Harris M. National Diabetes: Data Group National institutes of health. Diabetes and Digestive and Kidney Diseases. «Diabetes in American». 2nd ed. NIH. 1995, P. 1395–1468.
4. Meyer P. A. Digestion and absorption in: Murry R. K. Harper’s Biochemistry Stamford. Appleton and Lange. 2000, P. 178–188.
5. Barnett H. A., O’ Gara G. Diabetes and the heart: clinical practice series. Churchhill livingstone Edinburge, United Kingdom. 2003, P. 7–30.
6. Harris M. I., Flegal, K. M., Cowie C. C., Eberhardt M. S., Goldstein D. E., Little R. R., Wiedmeyer H. M., ByrdHolt D. D. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in United States adults. The third National Health and Nutrition Examination Survey, 1988–1994. Diabetes care. 1998, 21(4), 518–524.
https://doi.org/10.2337/diacare.21.4.518
7. Nathan D. M., Cleary P. A., Backlund, J. Y., Genuth S. M., Lachin J. M., Orchard T. J., Raskin P., Zinman B. Intensive diabetes treatment and cardiovascular diseases in patient with type 1 diabetes. New England J. Med. 2005, 353(25), 2643–2653.
https://doi.org/10.1056/NEJMoa052187
8. Corbett A. D., Menzies J. R. W., Macdonald, A., Paterson, S. J., Duwiejua, M. The opioid activity of akuammine, akuammicine and akuammidine: alkaloids from Picralima nitida (fam. Apocynaceae). Brit. J. Pharmacol. 1996, V. 119, P. 334.
9. Ubulom P., Akpabio E., Udobi C., Mbon R. Antifungal activity of aqueous and ethanolic extracts of picralima nitida seeds on Aspergillus flavus, Candida albican and Microsporum canis. Pharmaceut. Biotechnol. 2011, 3(5), 57–60.
10. Keay R. W. J., Onochie C.I.A., Stemfield D. D. Nigerian Trees. Federal Department of Forest Resources: Ibadan, Nigeria. 1964, P. 1–20.
11. Aguwa C. N., Ukwe C. V., InyaAgha S. I., Okonta J. M. Antidiabetic effect of Picralima nitida aqueous seed extract in experimental rabbit model, J. Natl. Remed. 2001, V. 1, P. 135–139.
12. Iroegbu C. U., Nkere C. K. Evaluation of the antibacterial properties of Picralima nitida stem bark extracts. Intern. J. Mol. Med. Adv. Sci. 2005, 1(2), 182–189.
13. AnsaAsamoah R., Kapadia G. J., Lloyed H. A., Sokoski E. A. Picratidine, a new indole alkaloid from Picralima nitida seeds. J. Nat. ProdtsLloydia. 1990, V. 5, P. 975–977.
14. Magihu M., Mbuyi M., Ndele M. B. Use of Medicinal Plants among the Pygmes (Mbute) to treat Malaria in the area of Mambasa, Ituri, Zaire. The Biodiversity of African Plants, Wageningen, Netherland. 1996, P. 741–746.
15. Francois G., Ake Assi L., Holenz J., Bringmann G. Constituents of Picralima nitida display inhibitory activities against asexual erythrocytic forms of Plasmodium falciparum in vitro. J. Ethnopharmacol. 1996, V. 54. P.113–117.
https://doi.org/10.1016/S0378-8741(96)01456-0
16. Iwu M. M., Klayman D. L. Evaluation of in vitro antimalarial activity of Picralima nitida extracts. J. Ethnopharmacol. 1992, V. 36, P. 133–135.
https://doi.org/10.1016/0378-8741(92)90012-G
17. Kspadia G. J., Angerhofer C. K., AnsaAsamoah R. Akuammine: an antimalarial indolemonoterpene alkaloid of Picralima nitida seeds. Planta Medica. 1993,59(6), P. 565–566.
https://doi.org/10.1055/s-2006-959764
18. Moeller B. L., Seedorff L., Nartey F. Alkaloids of Picralima nitida. Phytochemistry. 1972, V.11, P. 2620–2621.
https://doi.org/10.1016/S0031-9422(00)88556-8
19. Iwu M. M, Klayman D. L, Bass G. T. Antimalarial activity of Indole alkaloids from Picralima nitida. Am. J. Trop. Med. Hyg. 1992, V. 47. P. 179–186.
20. Wosu L. O., Ibe C. C . Use of extract of Picralima nitida bark in the treatment of experimental trypanosoniasis: A preliminary study. J. Ethnopharmacol. 1989, V. 25, P. 263–268.
https://doi.org/10.1016/0378-8741(89)90032-9
21. Menzies J. R. W., Paterson S. J., Duwiejua M., Corbelt A. D. Opioid activity of alkaloids extracted from Picralima nitida (fam. Apocynaceae). Eur. J. Pharmacol. 1998, V. 350, P. 101–108.
https://doi.org/10.1016/S0014-2999(98)00232-5
22. Ezeamuzie I. C., Ojinnaka M. C., Uzogara E. O., Oji S. E. Antiinflammatory, antipyretic and antimalarial activities of a West African medicinal plant Picralima nitida. Afr. J. Med. Med. Sci. 1994, 23(1), 85–90.
23. Levy A., Collin M. C. Anticholinestaric properties of pseudo Akamminigine alkaloid of Picralima nitida Apocynaceae. Ann. Pharmaceut. Franc. 1978, V. 36, P. 77–83.
24. Salihu M. A., Luqman A. O., Oshiba O. J. Rabiu O. Jimoh, Sikiru A. Jimoh, Ayokunle Olawepo, Adesola I. R. Abioye. Comparative study of the hypoglycemic effects of coconut water extract of Picralima nitida seeds (Apocynaceae) and Daonil in alloxaninduced diabetic albino rats. Afr. J. Biotechnol. 2009, 8(4), 574–576.
25. Okonta J. M., Adibe M. O., Ubaka C. M. Antiulcer activity of methanolic extract and fractions of Picralima nitida seeds (Apocynacaea) in rats. Asian Pacific J. Trop. Med. 2010, V. 7, P. 13–15.
26. Ayoub R. C., Zahid M. Q., Syed A. R., J. William, M. Arshad. Quantitative determination of Antioxidant potential of Artemisia persica. Analele Universitatll din BucurestiChimie (serie noua). 2010, 19(1), 23–30.
27. Reitman S., Frankel S. A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Amer. J. Clin. Pathol. 1957, V. 28, P. 56–63.
28. Weatherburn M. W. Phenolhypochlorite reaction for determination of ammonia. Anal. Chem. 1967, V. 39, P. 971–982.
https://doi.org/10.1021/ac60252a045
29. Trinder P. Monoreagent enzymatic glucose. Clinical Chemistry W. B. Sanders, Philadelphia. 1969. P. 24–27.
30. Sandkamp M., Funke H., Schulter K?hler E., Assmann G. Lipoprotein (a) is an independent risk factor for myocardial infarction at a young age. Clin. Chem. 1990, V. 36. 20–23.
31. Szasz G. Methods of Enzymatic Analysis. 2nd English ed. New York, Academic Press Inc. 1974, P. 717–720.
32. Drapper H. H., Squines E. J., Mahemedi H. W. A comparative elevation of thiobarbituric acid method for the determination of malondialdehyde in biological material. Freemed, 1993, V. 15, P. 353–363.
33. Schalm O. W., Caroll E. J. In: Veterinary Hematology. 3rd ed., Lea and Febiger, Philadelphia. 1975, P. 204–206.
34. Omotainse S. O., Anosa V. O. Erythrocyte response to Trypanosoma brucei in experimentally infected dogs. Rev. Elev. Med. Vet. Pays Trop. 1992, 45(3), 279–283.
35. Krause W. J. The art of examining and interpreting histological preparations. A student handbook. Parthenon Publishing group, U. K. 2001, P. 9–10.
36. Erasto P., Adebola P. O., Grierson D. S., Afolayan A. J. An ethanobotanical study of plants used for the treatment of diabetes in the Eastern Cape Province, South Africa. Afr. J. Biotechnol. 2005, 4(2), 1458–1460.
37. American Diabetes Association. Total prevalence of diabetes and prediabetes. American Diabetes Association. 2005, P. 15.
38. Osinubi A. A., Ajayi O. G., Adesiyun A. E. Evaluation of the antidiabetic effect of aqueous leaf extracts of Tripinanthus butungil in male spragne Dawley rats. Med. J. Islamic World Acad. Sci. 2006, 16(1), 41–47.
39. Fang Y. Z., Yang S., Wu G. Free radical, antioxidant and nutrition. Nutrition. 2002, V. 18. P. 872–890.
https://doi.org/10.1016/S0899-9007(02)00916-4
40. Ozougwu J. C. Antidiabetic effects of Allium cepa (onions) aqueous extracts on alloxaninduced diabetic Rattus novergicus. J. Med. Plants Res. 2010, 5(7), 1134–1139.
41. Hamme H. R., Martins S., Federlin K., Geisen K., Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetes retinopathy. Proc. Natl. Acad. Sci. USA. 1991, V. 88, P. 11555–11558.
https://doi.org/10.1073/pnas.88.24.11555
42. Sharpe P. C., Yue K. M., Catterwood M. A., McMaster D., Trimble E. R. The effects of glucose induced oxidative stress on growth and extracellular matrix gene expression of vascular smooth muscle cells. Diabetologia. 1998, V. 41, P. 1210–1219.
https://doi.org/10.1007/s001250051054
43. Tukuneu N. B., Bcyraktar M., Varli K. Reversal of defective nerve conductions with vitamin E supplementation in type 2 diabetes. Diabetes Care. 1998. V. 21, P. 1915–1918.
https://doi.org/10.2337/diacare.21.11.1915
44. Bell B. M., Hayes J. R., Stout R.W. Lipoprotein, insulin and glycaemic control in diabetes. Hormon. Metab. Res. 1984, V. 16, P. 252–260.
https://doi.org/10.1055/s-2007-1014760
45. InyaAgha S. I., Ezea S. C. Odukoya O. A. Evaluation of picralima nitida: Hypoglycemic Activity, Toxicity and Analytical Standards. Intern. J. Pharmacol. 2006, 2(5), 576–580.
https://doi.org/10.3923/ijp.2006.576.580
46. Pepato M. T., Baviera A. M., Vendramini R. C. Perez Mda P., Kettelhut Ido C., Brunetti I. L. Cissus sicyoides (Princess Vine) in the longterm treatment of streptozotocindiabetic rats. Biotechnol. Appl. Biochem. 2003, V. 3, P. 15–20.
https://doi.org/10.1042/BA20020065
47. Orchard T. J. Dyslipoproteinemia and diabetes. Endocrinol. Metab. Clin. North. Am. 1990, V. 19, P. 361–379.
48. Betteridge D. J. Diabetic dyslipidaemia. Am. J. Med. 1994. V. 96, P. 25–31.
https://doi.org/10.1016/0002-9343(94)90228-3
49. Sharma S. R., Dwivedi S. K., Swarup D. Hypoglycaemic and hypolipidaemic effects of Cinnamon tomala nees leaves. Ind. J. Exp. Biol. 1996, V. 34, P. 372–374.
50. Pushparaj P., Tan C. H., Tan B. K. Effect of Averrhoa bilimli leaf extract on blood glucose and lipids in streptozotocin diabetic rats. J. Ethnopharmacol. 2000, V. 72, P. 69–76.
https://doi.org/10.1016/S0378-8741(00)00200-2
51. Mitra K. S., Gopumadahavan S., Muralidhar S. T., Anturlikar S. D., Sujatha M. B. Effects of D400, a herbomineral preparation on lipid profile, hemoglobin and glucose tolerance in streptozotocin induced diabetes in rats. Ind. J. Exp. Biol. 1995, V. 33, P. 798–800.
52. Bopanna N. K., Kannan J., Gadgil S. Antidiabetic and antihyperglycemic effects of neem seed kernel powder on alloxan diabetic rabbits. Ind. J. Pharmacol. 1997, V. 29, P. 162–167.
- Details
- Hits: 190
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 2, 2014
https://doi.org/10.15407/biotech7.02.086
Р. 86-91, Bibliography 19, Ukrainian.
Universal Decimal classification: 582.998.1-119.2
M. M. Marchenko, А. E. Shelifist, L. М. Cheban
Phedkovitch Chernivtsy National University, Chernivtsy, Ukraine
Using the UV- and IR-spectroscopy methods in the plantstuff of Saussurea discolor (Willd.) DC. and S. porcii Degen, that are infrequent species of the genus of Saussurea DC., the existence of the sesquiterpene lactones in them was determined. Similar results for the plants cultivated in vitro were received. The contents of the sesquiterpene lactones are approximate to the same ones in the intact plants. It was found as well that the plants of S. discolor have their higher total content.
We elaborated the separation criterions (under 5-days extraction of chloroform), purification (using the adsorption chromatography column) and fractionation (applying thin layer chromatography) for the amounts of the sesquiterpene lactones. By thin layer chromatography there were detected the qualitative differences of their spectrum for the explants of plants, grown in vitro and for the S. discolor and S. porcii wild plants. The plant material of both investigated species differs besides by the quantitative content of the main components of the sesquiterpene lactones. All the investigated materials showed maximum amounts of Rf 0,36 and 0,95 components.
By diffusion in agar method the existence of the antimicrobial activity of the sesquiterpene lactones was detected. The test-system was Bacillus subtilis. This property was conditioned mainly by the action of the components of Rf 0,36 and 0,95.
The results give evidence for the ability of S. discolor and S. porcii to synthesize the sesquiterpene lactones. The cultivated in vitro plants could be as their sources. So the sesquiterpene lactones of S. discolor and S. porcii have the antimicrobial activity.
Key words: Saussurea discolor (Willd.) DC., S. porcii Degen, sesquiterpene lactones, thin layer chromatography, antimicrobial activity.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
L. Red List of Vascular Plants of the Carpathian Mountains. Lviv: State Museum of Natural History, NAS of Ukraine. 2002, 29 p.
2. The Red Book of Ukraine. The plantage ed. by J. P. Dіduha. Kyiv: Globalconsulting. 2009, 900 p. (In Ukrainian).
3. Zhang S., Won Y. K., Ong Ch. N., Shen H. M. Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Cur. Med. Chemistry-Anti-Cancer Agents. 2005, 5(3), 239–249.
https://doi.org/10.2174/1568011053765976
4. Choi S. Z., Choi S. U., Lee K. R. Cytotoxic sesquiterpene lactones from Saussurea calcicola. Arch. Pharm. Res. 2005, 28(10), 1142–1146.
https://doi.org/10.1007/BF02972976
5. Pandey M. M., Govindarajan R., Ravat A. K., Palpu P. Free radical scavenging potential of Saussurea costus. Acta Pharm. 2005, N 55, P. 297–304.
6. Yang J-L., Wang R., Lin J-L., Shi Y-P. Phytochemicals and biological activities of Saussurea species. J. of Asian natural Products Research. 2010, 12(2), 162–175.
https://doi.org/10.1080/10286020903496455
7. Yang M., Wang C. M., Zhang Q. Sesquiterpenes, lignans and other constituents from Saussurea macrota. Pharmazi. 2004, 59(12), 972–976.
8. Adekenov S.M, Kagarlitskii A.D. The chemistry of sesquiterpene lactones. Alma-Ata: Gylym. 1990, 188 p. (In Russian).
9. Alebastrov O.V. The regio- and stereoselective transformations of sesquiterpene lactones. Part 1. Int. Sci. J. Alt. Energy Ecol. 2005, 10(30), 20–35. (In Russian).
10. Pat. N. 65665. A01N4/00. The method of microclonal breeding of species of Saussurea discolor (Willd.) DC. and Saussurea porcii Degen. Marchenko M. M., Shelyfist A. E, Cheban L. M., publ.12.12. 2011, Bull. N 23. (In Ukrainian).
11. Pat. N. 69107. A61K31/365. The method of producing sesquiterpene lactones from the leaves of Saussurea discolor (Willd.) DC. Marchenko M. M., Shelyfist A. E, Cheban L. M., publ. 25.04.2012, Bull. N 8. (In Ukrainian).
12. The State Pharmacopoeia of Ukraine. Kyiv. 2004, 2000 p. (In Ukrainian).
13. Belyakov K. V., Popov D. M. Getting the standard sample of alantolaktone. Pharmacy. 2004, N. 1, P. 37–39. (In Russian).
14. Belyakov K. V. The definition of sesquiterpene lactones in the rhizomes and roots of Elecampane (Inula helenium L.). Pharmacy. 2003, N. 3, P. 10–12. (In Russian).
15. Fritsch N. I., Vivcharuk L. M., Mizyuk R. M. The study of antimicrobial activity of plants of the heath family (Ericaceae Juss.). Pharm. Magazine. 2005, N. 2, P. 97–104. (In Russian).
16. Marchenko M. M., Shelyfist A. E., Cheban L. M. The characteristics of the biologically active compounds of Saussurea porcii Degen. Biol. syst. 2010, 2(1), 12–15. (In Ukrainian).
17. Paulsen E. Contact sensitization from Compositae-containing herbal remedies and cosmetics. Contact Dermatitis. 2002, 2(47), 189–198.
https://doi.org/10.1034/j.1600-0536.2002.470401.x
18. Ren G.,Yu Z. M., Chen Y. L., Wu S. H. Sesquiterpene lactones from Saussurea alata. Nat. Prod. Res. 2007, 3(21), 221–226.
https://doi.org/10.1080/14786410601130752
19. Sharma R. K., Shanti S. S. Seed germination behaviour of some medicinal plants of Lahaul and Spiti cold desert: implications for conservation and cultivation. Cur. sci. 2006, 90(8), 1113–1118.
- Details
- Hits: 173
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" v. 7, no 2, 2014
https://doi.org/10.15407/biotech7.02.079
Р. 79-85, Bibliography 14, Russian.
Universal Decimal classification: 547.953:615.012:665:372
INFLUENCE OF BIOPREPARATIONS FROM DRY SOYBEAN AND SUNFLOWER LECITHINS ON SERUM LIPIDS COMPOSITION
H. V. Dziak 1, S. M. Shulga 2, M. Adab 3, O. L. Drozdov 3, I. S. Glukh 2
1 State organization «Dniproperovska Medical Acedemy» of Ministry of Health of Ukraine, Dnipropetrovsk
2 State organization «Institute of Food Biotechnology and Genomics» of National Academy of Sciences of Ukraine, Kyiv
3 Research Institute of Biomedical Problems of State organization «Dnipropetrovsk Medical Academy» of Ministry of Health of Ukraine, Dnipropetrovsk
Dry lecithin, which is a mixture of polar phospholipids, neutral lipids, free fatty acids, glycolipids, carbohydrates, and small amounts of moisture, is a promising object for biologic-hepatoprotectors creation. One of its pharmacological activity displays is its influence on serum lipids, in particular transport forms of these lipids. The influence of dry soy lecithin and sunflower on hyperlipoproteinemia ratio and other lipid disorders is studied.
It is shown that low-fat dry soybean lecithin showed hypocholesterolemic activity against all studied forms of serum cholesterol. Nonfat dry sunflower lecithin had similar but somewhat less prominent effect.
However reduced concentration of high density lipoprotein cholesterol under sunflower lecithin developed right before soya lecithin. Both lecithin prevented the development of dyslipidemia induced carbon tetrachloride.
Key words: soybean and sunflower lecithin biopreparations, serum lipids.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2014
References
1. Drozdov A. L., Shulga S. M., Adab М., Glukh I. S. Hepatotropic action of complex biological products of natural origin — sunflower and soy lecithin. Biotechnologia Acta. 2014, 7(1), 123–130. (In Russian).
2. Drozdov A. L., Postolov О. М., Kudelya І. V. Methods for determination of lipoprotein. DМА, Metodichna rozrobka. Dnipropetrovsk. 2005, 21 p. (In Ukrainian).
3. Drozdov A. L., Kudelya І. V., Kitenko N. V. Clinical diagnosis and prediction significance for determining lypoproteyn. DМА. Metodicheskoe posobiye. Dnіpropetrovsk. 2007, 24 p. (In Russian).
4. Dzyak G. V., Drozdov A. L., Shulga S. M., Glukh A. I., Glukh I. S. Modern presentation of biology properties of lecithin. Medychni perspektyvy. 2010, ХV(2), P. 12–23. (In Russian).
5. Shulga S. M., Glukh I. S., Drozdov О. L. Biological properties of sunflower lecithin. ONAFT, Naukovi pratsi. 2012, V. 1, Issue 42, P. 234–238. (In Ukrainian).
6. LeBlanc M. J., Brunet S., Bouchard G. Effects of dietary soybean lecithin on plasma lipid transport and hepatic cholesterol metabolism in rats. J. Nutr. Biochem. 2003, 14(1), 40–48.
https://doi.org/10.1016/S0955-2863(02)00253-X
7. Knuiman J. T., Beunen A. C., Katan M. B. Lecithin intake and serum cholesterol. Am. J. Clin. Nutr. 1989, V. 49, P. 266–268.
8. Mourad A. M., Pincinato E. C., Mazzola P. G. Sabha M., Moriel P. Influence of soy lecithin administration on Hypercholesterplemia. Cholesterol. V. 2010. Article ID 824814. P. 1–4.
9. Maligan J. M., Estiasih T., Kusnadi J. Structured phospholipids from commercial soybean lecithin containing omega-3 fatty acids reduces atherosclerosis risk in male Sprague dawley rats which fed with an atherogenic diet. World Academy of Science, Engineering and Technology. 2012, V. 69, P. 502–508.
10. European convention for the protection of vertebrate animals used for experimental and other scientific purposes. Council of Europe, Strasbourg, 1986, 53 p.
11. Мenshikov V. V., Delektorskay Л. N., Zolotnitskay R. P., Andreeva Z. М., Ankirskay А. S. Laboratory methods in clinical studies: Handbook. Ed. V. V. Menshikov. Мoscow: Medicine. 1987, 368 p. (In Russian).
12. Dzyak G. V., Drozdov A. L., Bilozub V. V., Kudelya І. V., Kharaponova О. B. Method for determining fractions of lipoprotein. Patent for utility model № 60647. Patent was published 25.06.2011, Bul. № 12/2011. (In Ukrainian).
13. Tvorogova М. G. Laboratory diagnosis of lipid disorders. Laboratory medicine. 2001, N 4, P. 67–74. (In Russian).
14. Plokhinskiy N. A. Biometrics. М.: Izd-vо Moskovskogo un-tа. 1978, 368 p. (In Russian).
- THE EMULSIFICATION OF HUMAN SERUM ALBUMIN AND HYALURONIC ACID SOLUTIONS IN POLYDIMETHYLSILOXANE PDMS-1000 А. M. Ruban, A. I. Kazanets, T. V. Krupskaya, V. V. Turov
- VARIABILITY OF COORDINATION COMPLEXES OF COPPER ACCUMULATED WITHIN FUNGAL COLONY IN THE PRESENCE OF COPPER-CONTAINING MINERALS M. O. Fomina
- COMBINED EFFECT OF ELECTROMAGNETIC RADIATION, DNA-INTERCALATORS, C60-FULLERENE AND CAFFEINE ON HUMAN BUCCAL EPITHELIUM CELLS G. B. Skamrova, Yu. I. Prylutskyy , M. P. Evstigneev
- OBTAINING AND CHARACTERIZATION OF RECOMBINANT FLUORESCENT DERIVATIVES OF SOLUBLE HUMAN HB-EGF N. V. Korotkevich, A. Ju. Labyntsev, D. V. Kolibo, S. V. Komisarenko