- Details
- Hits: 46
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 12, No 1, 2019
Р. 66-74, Bibliography 39, English
Universal Decimal Classification: 57.044: 612.35
https://doi.org/10.15407/biotech12.01.066
N. V. Dziubenko, H. M. Kuznietsova, O. V. Lynchak, V. K. Rybalchenko
Taras Shevchenko National University of Kyiv
Aim of the work was to investigate the suspended C60-fulleren effect on liver and pancreas state under intraperitoneal and intragastrial administration on rat experimental cholangitis model. Acute cholangitis was simulated by a single ingestion of α-naphthyl isothiocyanate — ANIT. C60-fullerene aqueous colloid solution (C60FAS, 0.15 mg/ml) was administered to animals at a volume containing C60-fullerenes at a dose of 0.5 mg/kg body weight in 24 and 48 h after ANIT administration. After72 h of the experiment, the animals were euthanized. Blood serum ALT and AST activities were measured, the liver and pancreas states were analyzed by light-microscopy level. It was found that intragastrial and intraperitoneal administration of C60FAS contributes to the correction of negative effects in the liver and pancreas caused by the induction of acute cholangitis. This was proved by the normalization of ALT activity, reduction of pancreatic parenchymal edema and liver fibrosis, and increased blood flow in these organs. Application of C60FAS could improve the state of the liver and pancreas under acute cholangitis in rats.
Key words: C60-fullerene, acute cholangitis.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Shyrokova Ye. N. Primarysclerosingcholangitis: etiology, diagnosis, prognosis and treatment. Clinical perspectives in gastroenterology, hepatology. 2003, V. 1, P. 2–8.
2. GidwaneyN. G., Pawa S., Das K. M. Pathogenesis and clinical spectrum of primarys clerosingcholangitis is. World J. Gastroenterol. 2017, 23 (14), 2459–2469.
3. Skrypnyk I. M. Primarys clerosing cholangitis is: a momentary glance at the problem. “News of medicine and pharmacy” Gastroenterology. 2008, V. 264, P. 3.
4. Prylutska S., Grynyuk I., Matyshevska O., Prylutskyy Yu., Evstigneev M., Scharff P., Ritter U. C60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs R&D. 2014, 14 (4), 333–340.
5. Prylutskyy Y., Bychko A., Sokolova V., Prylutska S., Evstigneev M., Rybalchenko V., Epple M., Scharff P. Interaction of C60 fullerene complexed to doxorubicin with model bilipid membranes and itsuptake by HeLacells. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, V. 59, P. 398–403.
6. Hendrickson O. D., Morozova O. V., Zherdev A. V., Yaropolov A. I., Klochkov S. G., Bachurin S. O., Dzantiev B. B. Study of distribution and biological effects of fullerene C60 after single and multiple intragastrial al administrations to rats. Fuller Nanotub. Carbon Nanostruct. 2015, 23 (7), 658–668.
7. Didenko G., Prylutska S., Kichmarenko Y., Potebnya G., Prylutskyy Y., Slobodyanik N., Ritter U., Scharff P. Evaluation of the antitumor immune response to C60 fullerene. Mat.-wissu Werkstofftech. 2013, 44 (2–3), 124–128.
8. Johnston H. J., Hutchison G. R., Christensen F. M., Aschberger K., Stone V. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol. Sci. 2010, V. 114, P. 162–182.
9. Byelinska I. V., Kuznietsova H. M., Dziubenko N. V., Lynchak O. V., Rybalchenko T. V., Prylutskyy Yu. I., Kyzyma O. A., Ivankov O., Rybalchenko V. K., Ritter U. Effect of С60 fullerene on the intensity of colon damage and hematological signs of ulcerative colitis in rats. Mat. Sci. Engin. 2018, V. 93, P. 505–517.
10. Ferreira C. A., Ni D., Rosenkrans Z. T., Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018, https://doi.org/10.1007/s12274-018-2092-y
11. Prylutska S. V., Grynyuk I. I., Matyshevska O. P., Prylutskyy Yu. I., Ritter U., Scharff P. Anti-oxidant properties of C60 fullerene in vitro, fullerene, nanotubes. Carbon Nanostruct. 2008, 16 (5–6), 698–705.
12. Halenova T. I., Vareniuk I. M., Roslova N. M. Hepatoprotective effect of orally applied water-soluble pristine C60 fullerene against CCl4-induced acute liver injury in rats. RSC Adv. 2016, 6 (102), 100046–100055.
13. Kuznietsova G. M., Dziubenko N. V., Chereschuk I. O., Rybalchenko T. V. Influence of water soluble C60 fullerene on the development of acute colitis in rats. Studia biologica. 2017, 11 (1), 41–50.
14. Gharbi N., Pressac M., Hadchouel M., Szwarc H., Wilson S. R., Moussa F. C60 fullereneis a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett. 2005, V. 5, P. 2578–2585.
15. Sumner S. C. J., Snyder R. W., Wingard C. Distribution and biomarkers of carbon-14-labeled fullerene C60 ([14C(U)]C60) in female rats and mice for up to 30 days after intravenous exposure. J. Appl. Toxicol. 2015, V. 35, P. 1452–1464.
16. Fickert P., Pollheimer M. J., Beuers U., Lackner C., Hirschfield G., Housset C., Keitel V., Schramm С. Characterization of animal models for primary sclerosing cholangitis (PSC). J. Hepatol. 2014, V. 60, P. 1290–1303.
17. Ritter U., Prylutskyy Yu. I., Evstigneev M. P., Davidenko N. A., Cherepanov V. V., Senenko A. I., Marchenko O. A., Naumovets A. G. Structural features of highlystablere producible C60 fullerenea queouscolloid solution probed by various techniques. Fullerene, Nanotubes, Carbon Nanostruct. 2015, 23 (6). P. 530–534. https://doi.org/10.1080/1536383X.2013.870900
18. Prylutskyy Yu. I., Yashchuk V. M., Kushnir K. M., Golub A. A., Kudrenko V. A., Prylutska S. V. Biophysical studies of fullerene-based composite for bionanotechnology. Mater Sci. Engin. 2003, 23 (1–2), 109–111.
19. Kuklin A. I., Islamov A. Kh., Gordeliy V. I. Two-detector system forsmall-angleneutr on scattering in strument. Neutron News. 2005, V. 16, P. 16–18.
20. Avdeev M. V., Khokhryakov A. A., Tropin T. V., Andrievsky G. V., Klochkov V. K., Derevyanchenko L. I., Rosta L., Garamus V. M., Priezzhev V. B., Korobov M. V., Aksenov V. L. Structural features of molecular-colloidal solutions of C60 fullerene sinwater by small-angleneutron scattering. Langmuir. 2004, V. 20, P. 4363–4368.
21. Lynchak O. V., Prylutskyy Yu. I., Rybalchenko V. K., Kyzyma O. A., Soloviov D., Kostjukov V. V., Evstigneev M. P., Ritter U., Scharff P. Comparative analysis of the antineoplastic activity of C60 fullerene with 5-fluorouracil and pyrrole derivative in vivo. Nanoscale Res. Lett. 2017, 12 (8), 1–6.
22. Kiernan J. Histological and histochemical methods: theory and practice. 4th ed. New York: Cold Spring Harbor Laboratory Press. 2008, 608 p.
23. Sergienko V. I., Bondareva I. B. Mathematical statistics in clinical studies. Moscow: GeoterMedicine. 2006. 304 p.
24. Bell L. N. Serum metabolic signatures of primary biliary cirrhosis and primary sclerosing cholangitis is. Liver Int. 2015, V. 35, P. 263–274.
25. Grattagliano I., Calamita G., Cocco T., Wang D. Q-H., Portincasa P. Pathogenic role of oxidative and nitrosatives tressinprimary biliary cirrhosis. WJG. 2014, 20 (19), 5746–5759.
26. Sorrentino P. Oxidative stress and steatosis are cofactors of liver injury in primary biliary cirrhosis. J. Gastroenterol. 2010, V. 45, P. 1053–1062.
27. Shearn C. T., Orlicky D. J., Petersen D. R. Dysregulation of antioxidant responses in patients diagnosed with concomitant Primary Sclerosing Cholangitis. Exp. Mol. Pathol. 2018, 104 (1), 1–8.
28. Petersen D. R., Orlicky D. J., Roede J. R., Shearn C. T. Aberrant expression of redox regulatory proteins in patients with concomitant primary Sclerosing cholangitis. Exp. Mol. Pathol. 2018, 105 (1), 32–36.
29. Ohta Y., Kongo-Nishimura M., Hayashi T., Kitagawa A., Matsura T., Yamada K. Saikokeishito extract exerts at therapeutic effect on alpha-naphthylisothiocyanate-induced liver injury in rats through attenuation of enhanced neutrophil in filtration and oxidative stress in the liver tissue. J. Clin. Biochem. Nutr. 2007, 40 (1), 31–41.
30. Zhao Y., Zhou G., Wang J., Jia L., Zhang P., Li R., Shan L., Liu B., Song X., Liu S., Xiao X. Paeoniflorin protects against ANIT-induced cholestasis by ameliorating oxidative stress in rats. Food Chem. Toxicol. 2013, V. 58, P. 242–248.
31. Li Y., YuH., XuZ., ShiS., WangD., ShiX., Wang Y., ZengB., DengH., DengX., Zhong X. Melatonin ameliorates ANITinduced cholestasis by activating Nrf2 through a PI3K/Aktdependent pathway in rats. Mol. Med. Rep. 2018. https://doi.org/10.3892/mmr.2018.9746
32. Jani N., Buxbaum J. Autoimmune pancreatitis and cholangitis. World J. Gastrointest. Pharmacol. Ther. 2015, 6 (4), 199–206.
33. Kawa S., Hamano H., Umemura T., Kiyosawa K., Uehara T. Sclerosing cholangitis associated with autoimmune pancreatitis. Hepatol. Res. 2007, 37 (3), S487–495.
34. Eswaran S. V. Water soluble nanocarbon materials: a panacea for all? Curr. Sci. 2018, 114 (9), 1846–1850.
35. Ahsan H., Ali A., Ali R. Oxygen free radicals and systemic autoimmunity. Clin. Exp. Immunol. 2003, 131 (3), 398–404.
36. Takahashi M., Kato H., Doi Y., Hagiwara A., Hirata-Koizumi M., Ono A., Kubota R., Nishimura T., Hirose A. Sub-acute oral toxicity study with fullerene C60 in rats. J. Toxicol. Sci. 2002, 37 (2), 353–361.
37. Zen Y. Thepathology of IgG 4-related disease in the bile duct and pancreas. Semin. Liver. Dis. 2016, 36 (3), 242–256.
38. Pemberton P. W., Aboutwerat A., Smith A., Warnes T. W. Ursodeoxycholic acid in primary biliary cirrhosis improves glutathione status but fails to reduce lipid peroxidation. Redox. Rep. 2006, V. 11, P. 117–123.
39. Shipelin V. A., Gmoshinski I. V., Tutel’yan V. A. Study of the fullerene C60-stability in biological substrates using in vitro model system. Nanotechnologies in Russia. 2013, 8 (11–12), 810–815.
- Details
- Hits: 117
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 12, No 1, 2019
Р. 81-85, Bibliography 13, English
Universal Decimal Classification: 576.3 + 612.014.2 / 3
https://doi.org/10.15407/biotech12.01.081
A. V. Zlatska1, 2, I. M. Gordiienko1, 3, D. О. Zubov1, 2, R. G. Vasyliev1, 2, S. N. Novikova1
1State Institute of Genetic and Regenerative Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv
2Biotechnology Laboratory “Ilaya Regeneration”,Medical Company “Ilaya”, Kyiv, Ukraine
3RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv
The aim of the study was to investigate the level of estrogen (ESR1, ESR2) and progesterone (PGR) receptors expression in the primary culture of endometrial multipotent mesenchymal stromal/stem cells endometrial multipotent mesenchymal stem cells and during in vitro cultivation under different athmospheric oxygen content. The dynamics of changes in the level of expression of the sex hormones receptors in the primary culture and during cultivation under different oxygen content in the athmosphere was shown.
Key words: human endometrium, multipotent mesenchymal stromal cells, expression of the receptors to the sex hormones, estrogen, progesterone.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Haydukov S. N., Boiarskiy Y. K., Palchenko N. A. Modern view on the problem of receptivity and thin endometrium in ART programs. Problemy reproduktsiyi. 2013, N 4, P. 51–60. (In Russian).
2. Kasius A., Smit J. G., Torrance H. L., Eijkemans M. J., Mol B. W., Opmeer B. C., Broekmans F. J. Endometrial thickness and pregnancy rates after IVF: a systematic review and meta-analysis. Hum. Reprod. Update. 2014, 20 (4), 530–541. https://doi.org/10.1093/humupd/dmu011
3. Margalioth E. J., Ben-Chetrit A., Gal M. Eldar-Geva T. Investigation and treatment of repeated implantation failure following IVF-ET. Hum. Reprod. 2006, 21 (12), 3036–3043. https://doi.org/10.1093/humrep/del305
4. Giulmamedova I. D., Dotsenko O. S., Savchenko I. V., Giulmamedova O. A. “Modern views on the diagnosis and correction of implant receptivity of the endometrium (literature review).” Taurian medical and biological bulletin. 2016, 16 (2), 169–174.
5. Sasson I. E., Taylor H. S. Stem cells and the pathogenesis of endometriosis. Ann. N. Y. Acad. Sci. 2008, V. 1127, P. 106–115. https://doi.org/10.1196/annals.1434.014
6. Edwards R. G. Human implantation: the last barrier in assisted reproduction technologies? Reprod. Biomed. Online. 2006, V. 13, P. 887–904. https://doi.org/10.1016/S1472-6483(10)61039-5
7. Dunson D. B., Colombo B., Baird D. D. Changes with age in the level and duration of fertility in the menstrual cycle. Hum. Reprod. 2002, P. 1399–1403. https://doi.org/10.1093/humrep/17.5.1399
8. Noyes R., Hertig A., Rock J. Dating of endometrial biopsy. Fertil. Steril. 1950, V. 1, P. 3–25; Noyes R. W., Hertig A. T., Rock J. Dating the endometrial biopsy. Am. J. Obstet Gynecol. 1975, V. 122, P. 262–263.https://doi.org/10.1016/S0002-9378(16)33500-1
9. Boomsma C. M., Kavelaars A., Eijkemans M. J., Lentjes E. G., Fauser B. C., Heijnen C. J., Macklon N. S. Endometrial secretion analysis identifies a cytokine profile predictive of pregnancy in IVF. Hum. Repro. 2009, V. 24, P. 1427–1435. https://doi.org/10.1093/humrep/dep011
10. Doorn J., Moll G., Le Blanc K. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng. 2012, 18 (2), 101–115. https://doi.org/10.1089/ten.teb.2011.0488
11. Xiaolong Meng. Endometrial regenerative cells: A novel stem cell population. J. Translat. Med. 2007, V. 5, P. 57. https://doi.org/10.1186/1479-5876-5-57
12. Dominici M. I., Le Blanc K., Mueller I., Slaper-Cortenbach I., Marini F., Krause D., Deans R., Keating A., Prockop Dj., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006, 8 (4), 315–317. https://doi.org/10.1080/14653240600855905
13. Zlatska A. V., Rodnichenko A. E., Gubar О. S., Zubov D. О., Novikova S. N., Vasyliev R. G. Obtaining of multipotent mesenchymal stromal cells from minimal endometrial biopsy. Biotechnol. acta. 2018, 11 (1), 76–81. https://doi.org/10.15407/biotech11.01.076
- Details
- Hits: 107
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
Biotechnologia Acta" V. 12, No 1, 2019
Р. 75-80, Bibliography 13, English
Universal Decimal Classification: 579.222
https://doi.org/10.15407/biotech12.01.075
RAPE BIOMASS (Brassica napus) AS RAW MATERIALS FOR BIOBUTANOL PRODUCTION
O. Tigunova1, G. Andrijash1, N. Beyko1, O. Zaharova2, S. Priyomov1, S. Shulga1
1SI “Institute of Food Biotechnology and Genomics”of the National Academy of Sciences of Ukraine, Kyiv
2 National University of Life and Environmental Sciences of Ukraine, Kyiv
The aim of the work was to investigate the accumulation of butanol by Clostridium strain producers using meshed green rape biomass as substrate. The accumulation of butanol by producer strains was studied using rape as substrate in the doses of 5–30 g/l. The cells were precipitated in an ultracentrifuge, the supernatant was distilled, and fermentation products were determined. The presence of solvents in the culture fluid was determined by gas chromatography. The biggest accumulation of butanol was produced by the strain Clostridium sp. IMB B-7570 on 2.3 g/l mashed rape biomass. The optimal inoculum concentration for maximum accumulation of butanol using rape biomass was 10% of the volume of fermentation liquid. The greatest accumulation of butanol (2.9 g/l) was obtained in optimal culture conditions and at 10 g/l dry rape biomass in the fermentation medium. Thus, the present study showed that mashed rape biomass was assimilated by Clostridium sp. strains. The accumulation of butanol depended of Clostridium strain, the amount of inoculum, the concentration and degree of grinding of the substrate.
Key words: biobutanol, Clostridium, plant biomass, rape.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Popa V. I. Biomass for fuel and biomaterials. Biomass as renewable raw material to obtain bioproducts of high-tech value. “Gheorghe Asachi” Romania. 2018, P. 1–37. https://doi.org/10.1016/B978-0-444-63774-1.00001-6
2. Balcerek M., Robak K. Review of second generation bioethanol production from residual biomass. Food Technol. Biotechnol. 2018, 56 (2), 174–187. https://doi.org/10.17113/ftb.56.02.18.5428
3. Kusi O. A., Premjet D., Premjet S. Review Article A Review Article of Biological Pre-Treatment of Agricultural Biomass. Pertanika J. Trop. Agric. Sci. 2018, 41 (1), 19–40.
4. Ahorsu R., Medina F., Constant? M. Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review. Energies. 2018, 11 (3366), 1–19. https://doi.org/10.3390/en11123366
5. Jaiswal A. K., Williams G. A., Hassan S. S., Ravindran R. A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioengineering. 2018, 5 (93), 1–20. https://doi.org/10.3390/bioengineering5040093
6. DSTU ISO 1614:2003. Technical glycerol. Sampling and testing methods. General Information. (In Ukrainian).
7. DSTU ISO 13906:2013. Animal feed. Methods of determining the content of kisotno-detergent fiber (KDF) and acid-detergent lignin. (In Ukrainian).
8. DSTU ISO 2470:2005. Paper, cardboard and cellulose. Measurement of diffuse reflection coefficient in blue light. (In Ukrainian).
9. DSTU EN 13041:2005. Miliananti soil and a medium of growth. Determination of physical properties. Density of dry weight, air volume, volume humidity, shrinkage and total pore space. (In Ukrainian).
10. DSTU 4595:2006. Soy protein, technical conditions. (In Ukrainian).
11. DSTU 3500-97. Paper and cardboard paper Tent conditions for change GOST 10700-84. (In Ukrainian).
12. Shulga S. M., Tigunova O. A., Blume Y. B. Lignocellulose as an alternative source for obtaining of biobutanol. Biotechnol. acta. 2013, 6 (2), 9–21. (In Ukrainian). https://doi.org/10.15407/biotech6.02.009
13. Tigunova O., Shulga S. Using by mutant strains C. acetobutylicum ligno-cellulosic material as substrate. Microbiol. biotechnol. 2015, V. 3, P. 38–49. (In Ukrainian). https://doi.org/10.18524/2307-4663.2015.3(31).53656
- Details
- Hits: 210
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 12, No 1, 2019
Р. 58-65, Bibliography 64, English
Universal Decimal Classification: 616-097.9.578
https://doi.org/10.15407/biotech12.01.058
DIAGNOSTIC CHARACTERISTICS OF THE ELISA TEST FOR THE HEPATITIS B VIRUS SURFACE ANTIGEN DETECTION
E. K.Kiseleva1, L. A. Ganova2, E. N.Chumak1, T. Yu. Trokhymchuk1, V. G. Serdyuk1, N. Ya. Spivak1, 2
1PJSC “SPC” Diaproph-Med “, Kyiv, Ukraine
2Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
The aim of the work was to define the diagnostic ability of the enzyme immunoassay test system DIAHBsAg (PJSC “SPC “Diaprof-Med””), in which the principle of analysis is based on biotin-streptavidin amplification of a specific signal.
The assay performance was studied on WHO Second International Standard for HBsAg, subtype adw2, genotype A (NIBSC code: 00/588) in concentration 0.006 IU/ml; on Capricorn HBsAg standard subtypes ad and ay in concentration 0.006 ng/ml and 0.004 ng/ml respectively. All 14 members of the HBsAg Low Titer Performance Panel PHA 106 (BBI, USA) were detected in DIA-HBsAg with high OD/CO ratio 11.9–40.7.
The DIA-HBsAg sensitivity is similar to the sensitivity of Roche COBAS and Murex HBsAg 3.0 when tested on the HBsAg Mixed Titer Performance Panel PHA 206 (BBI, USA) which consists of sera with various HBsAg concentrations.
The DIA-HBsAg has correctly detected low reactive members of the HBsAg Verification Panel VHA 601 (BBI, USA) with OD/CO ratio 21.0–40.7 whereas the negative member OD/CO was 0.4.
In the evaluation of 174 cross-reactive serum specimens one false positive result was obtained out of 8 sera reactive for IgM to HSV-1/2. The DIA-HBsAg specificity on 1 177 blood donors` specimens was 99.9%.
Key words: ELISA, diagnostics, hepatitis B, analytical and diagnostic sensitivity, specificity.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Petruzziello A. Epidemiology of hepatitis B virus (HBV) and hepatitis C virus (HCV) related hepatocellular carcinoma. Open Virol. J. 2018, 28 (12), 26–32. https://doi.org/10.2174/1874357901812010026
2. Gepatit B. http://www.who.int/ru/news-room/fact-sheets//hepatitis-b (In Russian).
3. Gong D. Y., Chen E. Q., Huang F. J., Leng X. H., Cheng X., Tang H. Role and functional domain of hepatitis B virus X protein in regulating HBV transcription and replication in vitro and in vivo. Viruses. 2013, 5 (5), 1261–1271. https://doi.org/10.3390/v5051261
4. Global hepatitis report 2017. http://www.who.int/hepatitis/publications/global-hepatitis-report.2017/en/.
5. Hirzel C., Pfister S., Gorgievski-Hrisoho M., Wandeler G., Zuercher S. Performance of HBsAg point-of-care tests for detection of diagnostic escape-variants in clinical samples. J. Clin. Virol. 2015, 33 (5). https://doi.org/10.1016/j.jcv.2015.05.024
6. Li M., Xi H., Wang Q., Hou F., Huo N., Zhang X., Li F., Xu X. Kinetics of serum HBsAg in Chinese patients with chronic HBV infection with long-term adefovir dipivoxil treatment. Chin. Med. J. 2014, 127 (11), 2101–2104.
7. Stasi S., Silvestri C., Berni R., Brunetto M. R., Zignego A. L., Orsini C., Milani S., Ricciardi L., De Luca A., Blanc P., Nencioni C., Aquilini D., Bartoloni A., Bresci G., Marchi S., Filipponi F., Colombatto P., Forte P., Galli A., Luchi S., Chigiotti S., Nerli A., Corti G., Sacco R., Car rai P., Ricchiuti A., Giusti M., Almi P., Cozzi A., Carloppi S., Laffi G., Voller F., Cipriani F. Clinical epidemiology of chronic viral hepatitis B: A Tuscany real-word large-scale cohort study. World J. Hepatol. 2018, 10 (5), 409–416. https://doi.org/10.4254/wjh.v10.i5.409
8. Shil N., Rahman A., Sultana N., Yasmin F. Markers of hepatitis viruses by ELISA among healthy blood donors. Mymensingh. Med. J. 2015, 24 (4), 776–779.
9. Hepatitis B and C Testing Guide, World Health Organization, 2017. http://apps.who.int//iris/bitstream/ handle/10665/260130/9789244549988-rus.pdf. (In Russian).
10. Hon J., Ren J., Song L., Zhao F., Liang P. Analytical performance of three diagnostic reagents for HBsAg on an automatic ELISA analyzer. J. Clin. Lab. Anal. 2018, 32 (1). https://doi.org/10.1002/jcla.22159
11. Mostovich L. A., Bezuglova L. V., Jaroslavceva O. A., Faranosova O. N., Netesova I. G. HBsAg serovariants and the evolution of tests to identify it. http://www.fadlab.ru/.../mostovich-la-serovarianty-hbsag-22-okt-2015-khmao.pd. (In Russian).
- Details
- Hits: 96
ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)
"Biotechnologia Acta" V. 12, No 1, 2019
Р. 39-57, Bibliography 39-57, English
Universal Decimal Classification: 759.873.088.5:661.185
https://doi.org/10.15407/biotech12.01.039
ANTIMICROBIAL ACTIVITY OF SURFACTANTS OF MICROBIAL ORIGIN
T. P. Pirog, D. A. Lutsay, L. V. Kliuchka, K. A. Beregova
National University of Food Technologies, Kyiv, Ukraine
The recent literature data about the antibacterial and antifungal activity of microbial surfactants (lipopeptides synthesized by representatives of genera Bacillus, Paenibacillus, Pseudomonas, Brevibacillus, rhamnolipids of bacteria Pseudomonas, Burkholderia, Lysinibacillus sp., sophorolipids of yeasts Candida (Starmerella) and Rhodotorula), and our own experiments data concerning antimicrobial activity of surfactants synthesized by Acinetobacter calcoaceticus IMB B-7241, Rhodococcus erythropolis IMB Aс-5017 and Nocardia vaccini IMV B-7405 were presented.
The analysis showed that lipopeptides were more effective antimicrobial agents compared to glycolipids. Thus, the minimum inhibitory concentrations (MIC) of lipopeptides, ramnolipids and sophorolipids are on average (?g/ml): 1–32, 50–500, and 10–200, respectively. The MIC of surfactants synthesized by the IMV B-7241, IMV Ac-5017 and IMV B-7405 strains are comparable to those of the known microbial lipopeptides and glycolipids. The advantages of glycolipids as antimicrobial agents compared with lipopeptides were the possibility of their synthesis on industrial
waste and the high concentration of synthesized surfactants. The literature data and our own results indicate the need to study the influence of microbes’ cultivation conditions on the antimicrobial activity of the final product.
Key words: microbial lipopeptides, rhamnolipids and sophorolipids, antibacterial and antifungal Activity.
© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019
References
1. Santos D. K., Rufino R. D., Luna J. M., Santos V. A., Sarubbo L. A. Biosurfactants: multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016, 17 (3), 401. https://doi.org/10.3390/ijms17030401
2. Mnif I., Ghribi D. Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J. Sci. Food Agric. 2016, 96 (13), 4310?4320. https://doi.org/10.1002/jsfa.7759
3. De Almeida D. G., Soares Da Silva R. C., Luna J. M., Rufino R. D., Santos V. A., Banat I. M., Sarubbo L. A. Biosurfactants: promising molecules for petroleum biotechnology advances. Front. Microbiol. 2016, V. 7, Р. 1718. https://doi.org/10.3389/fmicb.2016.01718
4. Arima K., Kakinuma A., Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 1968, 31 (3), 488–494. https://doi.org/10.1016/0006-291X(68)90503-2
5. Katz E., Demain A. L. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 1977, 41 (2), 449–474.
6. Jarvis F. G., Johnson M. J. A glyco-lipide produced by Pseudomonas aeruginosa. J. Am. Chem. Soc. 1949, 71 (12), 4124–4126. https://doi.org/10.1021/ja01180a073
7. Ito S., Honda H., Tomita F., Suzuki T. Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C12, C13 and C14 fractions). J. Antibiot (Tokyo). 1971, 24 (12), 855–859. https://doi.org/10.7164/antibiotics.24.855
8. Vollenbroich D., Pauli G., Оzel M., Vater J. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. Environ. Microbiol. 1997, 63 (1), 44–49.
9. Abalos А., Pinazo А., Infante М. R., Casals М., Garcіa F., Manresa A. Physicochemical and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 2001, 17 (5), 1367–1371. https://doi.org/10.1021/la0011735
10. Haba E., Pinazo A., Jauregui O., Espuny M. J., Infante M. R., Manresa A. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol. Bioeng. 2003, 81 (3), 316–322. https://doi.org/10.1002/bit.10474
11. Singh P., Cameotra S. S. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol. 2004, 22 (3), 142–146. https://doi.org/10.1016/j.tibtech.2004.01.010
12. Yilmaz E. S., Sidal U. Investigation of antimicrobial effects of a Pseudomonas-originated biosurfactant. Biologia. 2005, 60 (6), 723–725.
13. Cameotra S. S., Makkar R. S. Recent applications of biosurfactants as biological and immunological molecules. Curr. Opin. Microbiol. 2006, 7 (3), 262–266. https://doi.org/10.1016/j.mib.2004.04.006
14. Cort?s-S?nchez Ade J., Hern?ndez-S?nchez H., Jaramillo-Flores M. E. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol. Res. 2013, 168 (1), 22–32. https://doi.org/10.1016/j.micres.2012.07.002
15. Meena K. R., Kanwar S. S. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed. Res. Int. 2015. https://doi.org/10.1155/2015/473050
16. Cochrane S. A., Vederas J. C. Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med. Res. Rev. 2016, 36 (1), 4–31. https://doi.org/10.1002/med.21321
17. Zhao H., Shao D., Jiang C., Shi J., Li Q., Huang Q., Rajoka M. S. R, Yang H., Jin M. Biological activity of lipopeptides from Bacillus. Appl. Microbiol. Biotechnol. 2017, 101 (15), 5951–5960. https://doi.org/10.1007/s00253-017-8396-0
18. Abdel-Mawgoud A. M., Stephanopoulos G. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering. Synth. Syst. Biotechnol. 2018, 3 (1), 3–19. https://doi.org/10.1016/j.synbio.2017.12.001
19. Hajfarajollah H., Eslami P. Mokhtarani https://iubmb.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Eslami%2C+ParisaB., Akbari Noghabi K. Biosurfactants from probiotic bacteria: A review. Biotechnol. Appl. Biochem. 2018, V. 18, Р. 768–783. https://doi.org/10.1002/bab.1686. http://orcid.org/0000-0002-9717-7237
20. Torres M. J., Petroselli G., Daz M., Erra-Balsells R., Audisio M. C. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds. World. J. Microbiol. Biotechnol. 2015, 31 (6), 929–940. https://doi.org/10.1007/s11274-015-1847-9
21. Sharma D., Ansari M. J., Gupta S., Al Ghamdi A., Pruthi P., Pruthi V. Structural characterization and antimicrobial activity of a biosurfactant obtained from Bacillus pumilus DSVP18 grown on potato peels. Jundishapur. J. Microbiol. 2015, 8 (9), e21257. https://doi.org/10.5812/jjm.21257
22. Ndlovu T., Rautenbach M., Vosloo J. A., Khan S., Khan W. Characterisation and antimicrobial activity of biosurfactant extracts produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa isolated from a wastewater treatment plant. AMB Express. 2017, 7 (1), 108. https://doi.org/10.1186/s13568-017-0363-8
23. Chen Y., Liu S. A., Mou H., Ma Y., Li M., Hu X. Characterization of lipopeptide biosurfactants produced by Bacillus licheniformis MB01 from marine sediments. Front. Microbiol. 2017, V. 8, Р. 871. https://doi.org/10.3389/fmicb.2017.00871
24. Baindara P., Mandal S. M., Chawla N., Singh P. K., Pinnaka A. K., Korpole S. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express. 2013, 3 (1), 2. https://doi.org/10.1186/2191-0855-3-2
25. Zhou Z., Liu F., Zhang X., Zhou X., Zhong Z., Su H., Li J., Li H., Feng F., Lan J., Zhang Z., Fu H., Hu Y., Cao S., Chen W., Deng J., Yu J., Zhang W., Peng G. Cellulose-dependent expression and antibacterial characteristics of surfactin from Bacillus subtilis HH2 isolated from the giant panda. PLoS One. 2018, 13 (1), e0191991. https://doi.org/10.1371/journal.pone.0191991
26. Fan H., Zhang Z., Li Y., Zhang X., Duan Y., Wang Q. Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin-mediated antibacterial aActivity and colonization. Front Microbiol. 2017, V. 8, Р. 1973. https://doi.org/10.3389/fmicb.2017.01973
27. Saggese A., Culurciello R., Casillo A., Corsaro M. M., Ricca E., Baccigalupi L. A Marine isolate of Bacillus pumilus secretes a pumilacidin active against Staphylococcus aureus. Mar. Drugs. 2018, 16 (6), E180. https://doi.org/10.3390/md16060180
28. Pirog T. P., Paliichuk O. I., Iutynska G. O., Shevchuk T. A. Prospects of using microbial surfactants in plant growing. Mikrobiol. Zh. 2018, 80 (3), 115–135. (In Ukrainian). https://doi.org/10.15407/microbiolj80.03.115
29. Ramachandran R. Shrivastava M., Narayanan N. N., Thakur R. L., Chakrabarti A., Roy U. Evaluation of antifungal efficacy of three new cyclic lipopeptides of the class Bacillomycin from Bacillus subtilis RLID 12.1. Antimicrob. Agents. Chemother. 2018, 62 (1), e01457-17. https://doi.org/10.1128/AAC.01457-17
30. Liu J., Hagberg I., Novitsky L., Hadj-Moussa H., Avis T. J. Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens. Fungal Biol. 2014, 118 (11), 855–861. https://doi.org/10.1016/j.funbio.2014.07.004
31. Mnif I., Hammami I., Triki M. A., Azabou M. C., Ellouze-Chaabouni S., Ghribi D. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus. Fusarium solani. Environ. Sci. Pollut. Res. Int. 2015, 22 (22), 18137–18147. https://doi.org/10.1007/s11356-015-5005-6
32. Mnif I., Grau-Campistany A., Coronel-Le?n J., Hammami I., Triki M. A., Manresa A., Ghribi D. Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and Rhizoctonia solani. Environ. Sci. Pollut. Res. Int. 2016, 23 (7), 6690–6699. https://doi.org/10.1007/s11356-015-5826-3
33. Mihalache G., Balaes T., Gostin I., Stefan M., Coutte F., Krier F. Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environ. Sci. Pollut. Res. Int. 2018, 25 (30), 29784–29793. https://doi.org/10.1007/s11356-017-9162-7
34. Singh A. K., Rautela R., Cameotra S. S. Substrate dependent in vitro antifungal activity of Bacillus sp. strain AR2. Microb. Cell Fact. 2014, V. 13, Р. 67. https://doi.org/10.1186/1475-2859-13-67
35. Sarwar A., Brader G., Corretto E., Aleti G., Abaidullah M., Sessitsch A., Hafeez F. Y. Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. PLoS One. 2018, 13 (6), e0198107. https://doi.org/10.1371/journal.pone.0198107
36. Toral L., Rodr?guez M., B?jar V., Sampedro I. Antifungal activity of lipopeptides from Bacillus XT1 CECT 8661 against Botrytis cinerea. Front. Microbiol. 2018, V. 9, Р. 13–15. https://doi.org/10.3389/fmicb.2018.01315
37. Zihalirwa Kulimushi P., Arg?elles Arias A., Franzil L., Steels S., Ongena M. Stimulation of fengycin-type antifungal lipopeptides in Bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucor variabilis. Front. Microbiol. 2017, V. 8, Р. 850. https://doi.org/10.3389/fmicb.2017.00850
38. Asari S., Ongena M., Debois D., De Pauw E., Chen K., Bejai S., Meijer J. Insights into the molecular basis of biocontrol of Brassica pathogens by Bacillus amyloliquefaciens UCMB5113 lipopeptides. Ann Bot. 2017, 120 (4), 551–562. https://doi.org/10.1093/aob/mcx089
39. Aw Y. K., Ong K. S., Lee L. H., Cheow Y. L., Yule C. M., Lee S. M. Newly isolated Paenibacillus tyrfis sp. nov., from Malaysian tropical peat swamp soil with broad spectrum antimicrobial activity. Front. Microbiol. 2016, V. 7, Р. 219. https://doi.org/10.3389/fmicb.2016.00219
40. Huang E., Yousef A. E. Paenibacterin, a novel broad-spectrum lipopeptide antibiotic, neutralises endotoxins and promotes survival in a murine model of Pseudomonas aeruginosa-induced sepsis. Int. J. Antimicrob. Agents. 2014, 44 (1), 74–77. https://doi.org/10.1016/j.ijantimicag.2014.02.018
41. Huang E., Yang X., Zhang L., Moon S. H., Yousef A. E. New Paenibacillus strain produces a family of linear and cyclic antimicrobial lipopeptides: cyclization is not essential for their antimicrobial activity. FEMS Microbiol. Lett. 2017, 364 (8). https://doi.org/10.1093/femsle/fnx049
42. Hiramoto M., Okada K., Nagai S. The revised structure of viscosin, a peptide antibiotic. Tetrahedron Lett. 1970, V. 14, Р. 1087–1090. https://doi.org/10.1016/S0040-4039(01)97915-8
43. Saini H. S., Barrag?n-Huerta B. E., Lebr?n-Paler A., Pemberton J. E., V?zquez R. R., Burns A. M., Marron M. T., Seliga C. J., Gunatilaka A. A., Maier R. M. Efficient purification of the biosurfactant viscosin from Pseudomonas libanensis strain M9-3 and its physicochemical and biological properties. J. Nat. Prod. 2008, 71 (6), 1011–1015. https://doi.org/10.1021/np800069u
44. Geudens N., Martins J. C. Cyclic Lipodepsipeptides from Pseudomonas spp. – biological swiss-army knives. Front. Microbiol. 2018, V. 9, Р. 1867. https://doi.org/10.3389/fmicb.2018.01867
45. Ma Z., Geudens N., Kieu N. P., Sinnaeve D., Ongena M., Martins J. C., H?fte M. Biosynthesis, chemical structure, and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Front. Microbiol. 2016, V. 7, Р. 382. https://doi.org/10.3389/fmicb.2016.00382
46. Tazda?t D., Salah R., Mouffok S., Kabouche F., Keddou I., Abdi N., Grib H., Mameri N. Preliminary evaluation of a new low-cost substrate (amurca) in production of biosurfactant by Pseudomonas aeruginosa isolated from fuel-contaminated soil. J. Mater. Environ. Sci. 2018, 9 (3), 964–970.
47. Yang X., Huang E., Yuan C., Zhang L., Yousef A. E. Isolation and structural elucidation of brevibacillin, an antimicrobial lipopeptide from Brevibacillus laterosporus that combats drug-resistant gram-positive bacteria. Appl. Environ. Microbiol. 2016, 82 (9), 2763–2772. https://doi.org/10.1128/AEM.00315-16
48. Dalili D., Amini M., Faramarzi M. A., Fazeli M. R., Khoshayand M. R., Samadi N. Isolation and structural characterization of Coryxin, a novel cyclic lipopeptide from Corynebacterium xerosis NS5 having emulsifying and anti-biofilm activity. Colloids Surf. B Biointerfaces. 2015, V. 135, Р. 425–432. https://doi.org/10.1016/j.colsurfb.2015.07.005
49. Balan S. S., Kumar C. G., Jayalakshmi S. Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from Gulf of Mannar: Purification, characterization and its biological evaluation. Microbiol. Res. 2017, V. 194, Р. 1–9. https://doi.org/10.1016/j.micres.2016.10.005
50. Sharma D., Mandal S. M., Manhas R. K. Purification and characterization of a novel lipopeptide from Streptomyces amritsarensis sp. nov. active against methicillin-resistant Staphylococcus aureus. AMB Express. 2014, V. 4, Р. 50. https://doi.org/10.1186/s13568-014-0050-y
51. Hajfarajollah H., Mokhtarani B., Noghabi K. A. Newly antibacterial and antiadhesive lipopeptide biosurfactant secreted by a probiotic strain, Propionibacterium freudenreichii. Appl. Biochem. Biotechnol. 2014, 174 (8), 2725–2740. https://doi.org/10.1007/s12010-014-1221-7
52. Mandal S. M., Sharma S., Pinnaka A. K., Kumari A., Korpole S. Isolation and characterization of diverse antimicrobial lipopeptides produced by Citrobacter and Enterobacter. BMC Microbiol. 2013, V. 13, Р. 152. https://doi.org/10.1186/1471-2180-13-152
53. In?s M., Dhouha G. Glycolipid biosurfactants: Potential related biomedical and biotechnological applications. Carbohydr. Res. 2015, 416, Р. 59–69. https://doi.org/10.1016/j.carres.2015.07.016
54. Sekhon Randhawa K. K., Rahman P. K. Rhamnolipid biosurfactants - past, present, and future scenario of global market. Front. Microbiol. 2014, V. 5, Р. 454. https://doi.org/10.3389/fmicb.2014.00454
55. Kiran G. S., Ninawe A. S., Lipton A. N., Pandian V., Selvin J. Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource. Crit. Rev. Biotechnol. 2016, 36 (3), 399–415. https://doi.org/10.3109/07388551.2014.979758
56. Chen J., Wu Q., Hua Y., Chen J., Zhang H., Wang H. Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine. Appl. Microbiol. Biotechnol. 2017, 101 (23–24), 8309–8319. https://doi.org/10.1007/s00253-017-8554-4
57. Henkel M., Geissler M., Weggenmann F., Hausmann R. Production of microbial biosurfactants: Status quo of rhamnolipid and surfactin towards large-scale production. Biotechnol J. 2017, 12 (7). https://doi.org/10.1002/biot.201600561
58. Chong H., Li Q. Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb. Cell Fact. 2017, 16 (1), 137. https://doi.org/10.1186/s12934-017-0753-2
59. Irorere V. U., Tripathi L., Marchant R., McClean S., Banat I. M. Microbial rhamnolipid production: a critical re-evaluation of published data and suggested future publication criteria. Appl. Microbiol. Biotechnol. 2017, 101 (10), 3941?3951. https://doi.org/10.1007/s00253-017-8262-0
60. Tan Y. N., Li Q. Microbial production of rhamnolipids using sugars as carbon sources. Microb. Cell Fact. 2018, 17 (1), 89. https://doi.org/10.1186/s12934-018-0938-3
61. Tedesco P., Maida I., Palma Esposito F., Tortorella E., Subko K., Ezeofor C. C., Zhang Y., Tabudravu J., Jaspars M., Fani R., de Pascale D. Antimicrobial activity of monoramnholipids produced by bacterial strains isolated from the Ross Sea (Antarctica). Mar. Drugs. 2016, 14 (5). E83. https://doi.org/10.3390/md14050083
62. Chebbi A., Elshikh M., Haque F., Ahmed S., Dobbin S., Marchant R., Sayadi S., Chamkha M., Banat I. M. Rhamnolipids from Pseudomonas aeruginosa strain W10; as antibiofilm/antibiofouling products for metal protection. J. Basic Microbiol. 2017, 57 (5), 364–375. https://doi.org/10.1002/jobm.201600658
63. Elshikh M., Funston S., Chebbi A., Ahmed S., Marchant R., Banat I. M. Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: Physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. N. Biotechnol. 2017, V. 36, Р. 26–36. https://doi.org/10.1016/j.nbt.2016.12.009
64. Aleksic I., Petkovic M., Jovanovic M., Milivojevic D., Vasiljevic B., Nikodinovic-Runic J., Senerovic L. Anti-biofilm properties of bacterial di-rhamnolipids and their semi-synthetic amide derivatives. Front. Microbiol. 2017, V. 8, 24–54. https://doi.org/10.3389/fmicb.2017.02454
65. Das P., Yang X. P., Ma L. Z. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity. Front. Microbiol. 2014, V. 5, Р. 696. https://doi.org/10.3389/fmicb.2014.00696
66. Sana S., Datta S., Biswas D., Sengupta D. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage. Biochim. Biophys. Acta Biomembr. 2018, 1860 (2), 579–585. https://doi.org/10.1016/j.bbamem.2017.09.027
67. Leite G. G., Figueir?a J. V., Almeida T. C. Val?es J. L., Marques W. F., Duarte M. D., Gorlach-Lira K. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum. Biotechnol. Prog. 2016, 32 (2), 262–270. https://doi.org/10.1002/btpr.2208https://doi.org/10.1002/btpr.220868. Haba E., Bouhdid S., Torrego-Solana N., Marqu?s A. M., Espuny M. J., Garc?a-Celma M. J., Manresa A. Rhamnolipids as emulsifying agents for essential oil formulations: antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus. Int. J. Pharm. 2014, 476 (1–2), 134–141. https://doi.org/10.1016/j.ijpharm.2014.09.039
69. Oluwaseun A. C., Kola O. J., Mishra P., Singh J. R., Singh A. K., Cameotra S. S., Micheal B. O. Characterization and optimization of a rhamnolipid from Pseudomonas aeruginosa C1501 with novel biosurfactant activities. Sustainable Chem. Pharm. 2017, V. 6, Р. 26–36. https://doi.org/10.1016/j.scp.2017.07.001
70. Yan F., Xu S., Guo J., Chen Q., Meng Q., Zheng X. Biocontrol of post-harvest Alternaria alternata decay of cherry tomatoes with rhamnolipids and possible mechanisms of action. J. Sci. Food. Agric. 2015, 95 (7), 1469–1474. https://doi.org/10.1002/jsfa.6845
71. Deepika K. V., Sridhar P. R., Bramhachari P. V. Characterization and antifungal properties of rhamnolipids produced by mangrove sediment bacterium Pseudomonas aeruginosa strain KVD-HM52. Biocatal. Agric. Biotechnol. 2015, 4 (4), 608–615. https://doi.org/10.1016/j.bcab.2015.09.009
72. Rodrigues A. I., Gudi?a E. J., Teixeira J. A., Rodrigues L. R. Sodium chloride effect on the aggregation behaviour of rhamnolipids and their antifungal activity. Sci. Rep. 2017, 7 (1). https://doi.org/10.1038/s41598-017-13424-x
73. Oliveira M. R., Magri A., Baldo C., Camilios-Neto D., Minucelli T., Celligoi M. A. P. C. Sophorolipids a promising biosurfactant and its applications. Int. J. Adv. Biotechnol. Res. 2015, V. 6, Р. 161–174.
74. Dengle-Pulate V., Chandorkar P., Bhagwat S., Prabhune A. A. Antimicrobial and SEM studies of sophorolipids synthesized using lauryl alcohol. J. Surfactant Deterg. 2014, 17 (3), 543–552. https://doi.org/10.1007/s11743-013-1495-8
75. Zhang X., Ashby R., Solaiman D. K., Uknalis J., Fan X. Inactivation of Salmonella spp. and Listeria spp. by palmitic, stearic, and oleic acid sophorolipids and thiamine dilauryl sulfate. Front. Microbiol. 2016, V. 7, Р. 2076. https://doi.org/10.3389/fmicb.2016.02076
76. Morya V. K., Park J. H., Kim T. J., Jeon S., Kim E. K. Production and characterization of low molecular weight sophorolipid under fed-batch culture. Bioresour. Technol. 2013, V. 143, Р. 282–288. https://doi.org/10.1016/j.biortech.2013.05.094
77. Elshikh M., Moya-Ram?rez I., Moens H., Roelants S., Soetaert W., Marchant R., Banat I. M. Rhamnolipids and lactonic sophorolipids: natural antimicrobial surfactants for oral hygiene. J. Appl. Microbiol. 2017, 123 (5), 1111–1123. https://doi.org/10.1111/jam.13550
78. Solaiman D. K. Y., Ashby R. D., Birbir M., Caglayan P. Antibacterial activity of sophorolipids produced by Candida bombicola on gram-positive and gram-negative bacteria isolated from salted hides. JALCA. 2016, V. 111, Р. 358–364.
79. Solaiman D. K., Ashby R. D., Uknalis J. Characterization of growth inhibition of oral bacteria by sophorolipid using a microplate-format assay. J. Microbiol. Meth. 2017, V. 136, Р. 21–29. https://doi.org/10.1016/j.mimet.2017.02.012
80. Sen S., Borah S. N., Bora A., Deka S. Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb. Cell. Fact. 2017, 16 (1), 95. https://doi.org/10.1186/s12934-017-0711-z
81. Pirog T. P., Konon A. D., Sofilkanich A. P., Iutinskaia G. A. Effect of surface-active substances of Acinetobacter calcoaceticus IMV B-7241, Rhodococcus erythropolis IMV Ac-5017, and Nocardia vaccinii K-8 on phytopathogenic bacteria. Appl. Biochem. Microbiol. 2013, 49 (4), 360–367. https://doi.org/10.1134/S000368381304011X
82. Aleksic I., Petkovic M., Jovanovic M., Milivojevic D., Vasiljevic B., Nikodinovic-Runic J., Senerovic L. Anti-biofilm properties of bacterial di-rhamnolipids and their semi-synthetic amide derivatives. Front. Microbiol. 2017, V. 8, Р. 2454. https://doi.org/10.3389/fmicb.2017.02454
83. Ribeiro I. A., Bronze M. R., Castro M. F., Ribeiro M. H. Selective recovery of acidic and lactonic sophorolipids from culture broths towards the improvement of their therapeutic potential. Bioprocess. Biosyst. Eng. 2016, 39 (12), 1825?1837. https://doi.org/10.1007/s00449-016-1657-y
84. Wittgens A., Santiago-Schuebel B., Henkel M., Tiso T., Blank L. M., Hausmann R., Hofmann D., Wilhelm S., Jaeger K. E., Rosenau F. Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida ? a step forward to tailor-made rhamnolipids. Appl. Microbiol. Biotechnol. 2017. https://doi.org/10.1007/s00253-017-8702-x
85. Zhihui X., Jiahui S., Bing L., Xin Y., Qirong S., Ruifu Z. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl. Environ. Microbiol. 2013, 79 (3), 808?815. https://doi.org/10.1128/AEM.02645-12
86. Tiso T., Zauter R., Tulke H., Leuchtle B., Li W. J., Behrens B., Wittgens A., Rosenau F., Hayen H., Blank L. M. Designer rhamnolipids by reduction of congener diversity: production and characterization. Microb. Cell. Fact. 2017, 16 (1), 225. https://doi.org/10.1186/s12934-017-0838-y
87. Roelants S. L., Ciesielska K., De Maeseneire S. L., Moens H., Everaert B., Verweire S., Denon Q., Vanlerberghe B., Van Bogaert I. N., Van der Meeren P., Devreese B., Soetaert W. Towards the industrialization of new biosurfactants: Biotechnological opportunities for the lactone esterase gene from Starmerella bombicola. Biotechnol. Bioeng. 2016, 113 (3), 550?559. https://doi.org/10.1002/bit.25815
88. Pirog T. P., Sidor I. V., Lutsai D. A. Calcium and magnesium cations influence on antimicrobial and antiadhesive activity of Acinetobacter сalcoaceticus ІMV B-7241 surfactants. Biotechnol. acta. 2016, 9 (6), 50–57. https://doi.org/10.15407/biotech9.06.050
89. Pirog T. P., Nikituk L. V., Shevchuk T. A. Influence of divalent cations on synthesis of Nocardia vaccinii ІMV B-7405 surfactants with high antimicrobial and anti-Adhesion activity. Mikrobiol. Zh. 2017, 79 (5), 13–22. (In Ukrainian). https://doi.org/10.15407/microbiolj79.05.013
90. Pirog T. P., Shevchuk T. A., Petrenko N. M., Paliichuk O. I., Iutynska G. O. Influence of cultivation conditions of Rhodococcus erythropolis IMV Ac-5017 on the properties of synthesized surfactants. Mikrobiol. Zh. 2018, 80 (4), 13–27. (In Ukrainian). https://doi.org/10.15407/microbiolj80.04.013