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Mercury is hazardous neurotoxicant. Carbon-containing nanoparticles (CNPs) are promising 
in nanotechnology. It was shown that HgCl2 starting from 5 μM caused a concentration-dependent 
increase in the extracellular L-[14C]glutamate level in nerve terminals resulted from weak functioning 
of glutamate transporter, and so significantly decreased L-[14C] glutamate uptake. Combined effects 
of Hg2+ and CNPs obtained by heating of citric acid and urea were analysed. CNPs were able to 
mitigate in an acute manner excitotoxic Hg2+-induced increase in the extracellular L-[14C]glutamate 
level in nerve terminals by 37%, thereby being a provisional Hg2+ scavenger. Besides biotechnological 
implementation of data, developed approach can be applicable for monitoring capability of different 
particles and compounds to mitigate Hg2+-mediated threat.

Xenobiotic metal mercury is one of the major crucial pollutants of global public health concerns 
according to the World Health Organization assessment [1, 2]. Mercury exists in elemental, 
inorganic, and organic forms [1, 2]. This metal is available in the environment coming from natural 
and anthropogenic sources. Mercury contaminates the soil, air and surface waters and may enter 
human organism [3–5]. The central nervous system is targeted by mercury [1]. 

Carbon-containing nanoparticles are promising in nanotechnology and due to their surface 
properties can be used for adsorption of heavy metals.

The aim of this study was to analyse a capability of carbon-containing nanoparticles (CNPs) 
obtained by heating of organics, to influence mercury-induced neurotoxicity in biological system, 
such as presynaptic rat cortex nerve terminals. 

Methods. CNPs were obtained using method described in [6] by the combustion of citric acid and urea. 
The cortex nerve terminals isolated from Wistar rats were used in the experiments. [14C]

glutamate uptake and release in the nerve terminals were monitored using a radiolabelled assay. In 
particular, rat brain nerve terminals (synaptosomes) were isolated from the rat cortex. The cortex 
regions were rapidly removed and homogenized in the ice-cold solution consisted of: sucrose 0.32 M; 
HEPES-NaOH 5 mM, pH 7.4; EDTA 0.2 mM. One synaptosomal preparation was isolated from one 
rat. The synaptosomes from brain homogenate were obtained according to the procedure proposed by 
Cotman with minor modifications [7] by differential centrifugation and Ficoll-400 density gradient 
centrifugation. The concentrations of proteins were monitored according to Larson.

To measure the uptake of  L-[14C] glutamate, the synaptosomal suspension was pre-incubated 
in the standard saline solution. Then, HgCl2 was applied to the synaptosomal incubation media, 
and synaptosomes were further incubated for 6 min before starting the uptake, which in turn was 
initiated by the application of the aliquots of non-radiolabelled L-glutamate (10 μM) supplemented 
with L-[14C] glutamate, 420 nM, 0.1 μCi/ml, and then the synaptosomes were incubated at 37 C 
during 1 min to measure the initial rate of L-[14C] glutamate uptake. L-[14C] glutamate uptake 
was monitored with liquid scintillation counting using the ACS scintillation cocktail, 1.5 ml [8]. 

To measure the extracellular level of L-[14C] glutamate, the synaptosomes were were pre-
incubated at 37 C during 10 min to restore the ion gradients, and after that they were loaded with 
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L-[14C] glutamate, 1 nmol per mg of protein, 238 mCi/mmol, in the standard saline solution at 
37 C during 10 min according to [9]. Total synaptosomal content of L-[14C]  glutamate was equal to 
200000±15000 cpm/mg protein. 

Results. In the first sets of the experiments, Hg2+ effects on the extracellular level of L-[14C] 
glutamate were assessed in nerve terminal preparations (Fig.1). It was shown a mercury-induced 
excitotoxic increase in the ambient level of L-[14C] glutamate in nerve terminal preparations.

In the second sets of the experiments (Fig. 2), it was demonstrated that Hg2+ decreased the initial 
rate and accumulation of L-[14C] glutamate by nerve terminals starting from a concentration of 10 μM.

Therefore, it was shown that a mercury-induced excitotoxic increase in the ambient level of L-[14C] 
glutamate in nerve terminal preparations (Fig. 1) resulted from weak functioning of glutamate 
transporter, and so significantly decreased L-[14C] glutamate uptake (Fig. 2). 

Fig. 1. The extracellular level of L-[14C] glutamate in nerve terminal preparations in the presence of HgCl2 
within the concentration range from 0.5 to 20 μM

* — Р  0.05 as compared to the control; n = 6

Fig. 2. The initial rate of L-[14C] glutamate uptake by nerve terminals in the presence 
of HgCl2 at different concentrations

* — Р  0.05 as compared to the control; n = 10
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In the third sets of the experiments, it was shown that CNPs from heating of citric acid/urea 
mitigated an excitotoxic mercury-induced increase in the extracellular level of L-[14C] glutamate 
in nerve terminal preparations. The latter was equal to 0.425 ± 0.023 nmol/mg of proteins after 
combined application of HgCl2

 (5 μM) and CNPs (1 mg/ml) (Р  0.05 as compared to effect of Hg2+per 
se; n = 6) and 0.460 ± 0.017 nmol/mg of proteins after combined application of HgCl2

 (5 μM) and 
CNPs (10 mg/ml) (Р  0.05 as compared to effect of Hg2+ per se; n = 6). 

Therefore, CNPs were able to mitigate in an acute manner excitotoxic Hg2+-induced increase 
in the extracellular L-[14C]glutamate level in nerve terminals by 37%, thereby being a provisional 
Hg2+ scavenger.

Conclusions. CNPs can mitigate Hg2+-induced excitotoxicity in nerve terminals. Taking into 
account this fact, it can be assumed that these nanoparticles can be used as Hg2+ adsorbent in the 
human organism. Besides biotechnological implementation of data, developed approach can be 
applicable for monitoring capability of different particles and compounds to mitigate Hg2+-mediated 
threat.
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