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The aim of the work was to investigate detection of different modifications of the green fluores-
cent protein gene (gfp) in the transgenic tobacco and maize plants by polymerase chain reaction
(PCR).

Methods. Total DNA isolation, PCR, electrophoresis of DNA in agarose gel, bioinformatic
resources.

Results. Three pairs of primers were used for PCR analysis of tobacco and maize containing wild-
type gfp or mutant synthetic gene S65Tpgfp. The primer pair gfplF-gfplR interacted with the wild-
type gfp gene only. The gfp2F-gfp2R primers interacted with the gfp gene of different modifications
both in tobacco and maize. The gfp3F-gfp3R primer pair interacted with the modified S65Tpgfp gene
in tobacco DNA, but not with maize samples.

Conclusions. Primers for detection of heterologous gfp gene, which were both narrowly specific
(only one gene modification could be detected), and universal (more than one gene modification could
be detected), were verified. It was shown that the primer pair gfp2F-gfp2R was universal for gfp gene
detection both in tobacco and maize plants by PCR. The results obtained with gfp2F-gfp2R were reli-
ably reproducible, so this primer pair was recommended for general use.

Key words: gfp; S65Tpgfp; Zea mays L., Nicotiana tabacum L.; PCR; transgene detection; mole-

cular markers.

Cultivation of genetically modified varie-
ties of important agricultural crops, which
have useful traits of resistance to herbicides,
pests, etc., leads to a significant reduction in
the cost of final products in large scale [1],
which is important in view of the constant
growth of the human population and, accord-
ingly, the need for food. Maize (Zea mays L.)
occupies the third place among cereal crops in
the world and the second place in European
agricultural production [2, 3]. For efficient
expression of genes and accumulation of their
products in maize plants in the required
amount, appropriate tissues and stage of plant
development, components or genetic elements

within the integrated DNA can come from
various sources, such as: plants, bacteria,
viruses [4]. To investigate the effect of trans-
formation conditions and regulatory nucleo-
tide sequences on gene expression, reporter
genes are used, which facilitate visualization
and quantitative measurement of transgenic
protein. One such reporter gene that is often
used in research on genetic transformation of
plants is the green fluorescent protein gene
(gfp) of jellyfish Aequorea victoria [5—7]. In
addition to the wild-type gene, synthetic for
plants (pgfp) and mutant synthetic genes that
have a replacement of serine for threonine
(S65Tpgfp) or cysteine (S65Cpgfp) in the 65"
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position of the pgfp gene are also used in the
studies [8]. Expression of synthetic gfp genes
usually results in brighter fluorescence com-
pared to the wild-type gfp gene.

The purpose of our study was to develop
an optimal technique for detecting the
S65Tpgfp transgene in the genome of maize
plants obtained after Agrobacterium-mediated
transformation with the pCB271 vector
containing a mutant gene for green fluorescent
protein [9]. The developed technique would
allow us to investigate the influence of
transformation conditions and regulatory
nucleotide sequences on the expression of the
S65Tpgfp reporter gene, in order to further use
the acquired knowledge to construct efficiently
working vectors that contain the desired gene
of interest, as well as to develop transgenic
maize plants with a certain trait.

Material and Methods

Plant material. Transgenic plants of maize
hybrid F; KP7xPRZh5 of Ukrainian breeding
were obtained after Agrobacterium-mediated
transformation of cultivated immature
embryos using the vector pCB271. Tobacco
plants of cultivar Petit Havana were obtained
after Agrobacterium-mediated transformation
of leaf disks by the pCB271 or pICH5290
vectors [9]. Total DNA was isolated with
CTAB and PVP-40 [10] from the plant leaves.
The gfp sequence in pICH5290 was deposited
within the synthetic construct GFP::LicBM3
(GFP::1icBM3) (GenBank KX458181.2) while
the sequence of S65Tpgfp in pCB271 was as
in the cloning vector pNC-GFP (GenBank
EU257522.1)[11-13].

PCR of plant DNA for the presence of the gfp
gene. To exclude the contamination of the plant
material by A. tumefaciens, an amplification
of the bacterial vir-D1 gene was carried out
prior to the PCR assay on the transgene [14].
To analyze the presence of the gfp gene in plant

DNA by PCR, three pairs of primers were
synthesized by Metabion (Germany) (Table).

The reaction was carried out as previously
described [9]. The amplification program
for detecting the gfp gene was set as follows:
denaturation at 94 °C — 4 min, 34 cycles
(denaturation at 94 °C — 30 s, annealing at
56 °C — 30 s, elongation at 72 °C for 45 s),
completion of elongation at 72 °C — 4 min.
For the gfplF-gfpl1R primer pair, the standard
program was used without modification.
When performing the analysis with primers
gfp2F-gfp2R in the program, the annealing
temperature was increased to 59 °C and
the elongation time was reduced from 45
to 30 s. For the gfp3F-gfp3R primer pair,
the temperature at the annealing stage was
reduced to 55 °C, and the elongation stage
time was reduced to 20 s. Electrophoresis
of amplification products was performed in
1.0% or 2.0% agarose gel prepared in lithium
borate (LB) buffer [15] with bromide ethidium
(0.5 pg/ml) at 6 V/em for 40 min.

An advanced software package CLC Main
Workbench v. 6.9.2 (Qiagen) and the NIH
genetic sequence database GenBank™ were used
for a comprehensive analysis and alignment of
nucleotide sequences.

Results and Discussion

Analysis of plant DNA for the presence of
the gfp gene by PCR using three pairs of primers
revealed the following regularities. With the
help of the gfplF-gfplR primer pair, it was
possible to detect only the wild-type gfp gene.
The amplicon of the expected size was detected
in the DNA of transgenic tobacco, obtained with
the help of the pICH5290 vector (Fig. 1). When
the primer annealing temperature was increased
to 59 degrees, the presence of an amplicon of
weak intensity of the expected size was detected
in the DNA of tobacco samples containing the
mutant S65Tpgfp gene.

Table. Features of primers used in the study

Primer Nucleotide sequence Melting tempoera- Arpplicon Reference
name ture (Tm), °C size, bp

gfplF, 5"-ATG GTG AGC AAG GGC GAG-3’ 53.9 703 7]
gfplR 5'-CCA TGC CGT GAG TGA TCC-3’ 51.3

gfp2F, 5-GAC GTG AAC GGC CAC AAG TTC A-3’ 56.9 311 [9]
gfp2R 5'-CGA TGC GGT TCA CCA GGG TGT-3' 57.9

gfp3F, 5-ATG CCA CCT ACG GAA AGC TC-3' 54.3 963 this re-
gfp3R 5'-GAT GCG GTT CAC CAG GGT AT-3' 52.8 search
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Fig. 1. Electrophoregram of PCR products of tobacco plant DNA for gfp gene using gfp1F-gfp1R primer pair
at different annealing temperatures in 1% agarose gel

Lane 1-2, DNA samples of tobacco plants obtained as a result of Agrobacterium-mediated transformation

with pCB271 vector, which contained the S65Tpgfp mutant gene of green fluorescent protein; 3—4, DNA

samples of tobacco plants, obtained after Agrobacterium-mediated transformation by the pICH5290 vector,

which contained the wild-type gfp gene; 5 — DNA no template control; M, the 1 kb DNA Ladder molecular

weight marker, Solis BioDyne. The expected fragment size was 703 bp.

gfp2F-gfp2R
A

afp3F-gfp3R
A

311 bp >
263 bp >

— 564 bp

— 125bp

Fig. 2. Electrophoregram of products of PCR analysis of plant DNA of tobacco and maize
for the presence of gfp gene using primer pairs gfp2F-gfp2R or gfp3F-gfp3R in 2% agarose gel

Lane 1, DNA sample of a tobacco plant transformed with the pCB271 vector, which contained the
S65Tpgfp mutant gene of green fluorescent protein; 2—3, DNA samples of maize plants obtained as a result of
Agrobacterium-mediated transformation with the pCB271 vector, which contained the S65Tpgfp gene; 4, DNA
sample of a tobacco plant, obtained as a result of Agrobacterium-mediated transformation with the pICH5290
vector, which contained the wild-type gfp gene; 5, negative control (DNA sample of untransformed maize);
6, no DNA control; M, Lambda DNA/HindIII molecular weight marker.

A pair of primers gfp2F-gfp2R interacted
with the gfp gene of various modifications.
Amplicons of the expected size were visualized
after the analysis of DNA samples of both
tobacco and maize obtained with the pCB271
vector, as well as in the tobacco samples
obtained after transformation with the vector
pICH5290 (Fig. 2). Under ultraviolet light the
amplicons from tobacco DNA samples were
brighter compared to the amplicons obtained
from the analysis of maize samples. This
phenomenon may be due to either nonspecific
priming with other sequences of maize DNA,
or to a partial disruption of primer access to
the gene’s nucleotide sequence because, for
example, its methylation [16]. Performing
a touchdown PCR resulted in improved

visualization of the expected size amplicon but
it was rather negligible.

The gfp3F-gfp3R primer pair interacted
only with the modified S65Tpgfp mutant gene
found in tobacco DNA, but not with maize
samples. This fact may indicate a strong
affinity of this primer pair to other areas of the
maize genome. An amplicon of the desired size
was not observed either when analyzed with
this primer pair of tobacco DNA containing
the wild-type gfp gene. Since the expected size
of the amplicon when using the gfp3F-gfp3R
primer pair is small (Table) and may be too
close to the common leading edge of the low
molecular weight fraction in the gel. Agarose
gels with different concentrations of agarose
(1 and 2%) were used in the study to improve
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Fig. 3. BLASTN pairwise alignment of the different versions of gfp nucleotide sequence
The gfp sequence in pICH5290 (Query) is aligned against the sequence of S65Tpgfp in pCB271 (Sbjct).

the visualization of small-sized amplicons.
Increasing the concentration of the gel to 2%
enabeled us to visualize small amplicons much
better.

The alignment let us clarify identity
of the nucleotide sequences from different
gfp versions. The identity between them
comprised 86% (Fig. 3). It was clear why the
primer pair gfplF-gfplR did not perfectly
interacts with the synthetic mutant gene
S65Tpgfp. The forward primer hybridized to
11 nucleotides of 18 only while the reverse
one to 7 of 18. It explains appearance of faint
signal at increased annealing temperature in
tobacco samples containing the mutant gene.
The primer pair gfp2F-gfp2R had perfect
complementarity with 100% coverage to each
of the gene versions. At the same time gfp3F-
gfp3R hybridized to the gene S65Tgfp only but
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not to gene gfp wild-type. It was specific to the
sites that differed between gene sequences. The
bioinformatic data perfectly correlated with
the obtained PCR results.

Therefore, each of the investigated pairs
of primers interacted differently with the
gfp gene, which was located in tobacco or
maize DNA. Using a pair of primers gfplF-
gfplR made it possible to detect only the
wild-type gfp gene in the plant genome. Using
the gfp3F-gfp3R primer pair, it was possible
to identify only the mutant synthetic gene
S65Tpgfp in tobacco DNA, but not in maize
samples. The primer pair gfp2F-gfp2R proved
to be universal, with which it was possible to
detect both modifications of the gfp gene in
both tobacco and maize samples. The acquired
knowledge can be useful in screening large
arrays of plant material for the gfp transgene
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presence that is often employed in plant
biotechnology as a reporter gene. Universal
primers allow the researchers to detect quickly
all gene modifications in plant material while
the others pinpoint gene specify. It was found
the primers show specificity in relation to the
plant species. So, with the help of primers
gfp3F-gfp3R, it was possible to detect the
S65Tpgfp gene in the DNA of tobacco but
not maize. The acquired knowledge will
help researchers to avoid false conclusions
regarding the absence of a transgene in plant
material, when in fact it may be present there.
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OCOBJINBOCTI BUABJEHHS TPAHCTEHA 3EJIEHOTO ®JIYOPECIIEHTHOI'O ITPOTEIHY
METOJOM IIJIP ¥ POCJIMHAX TIOTIOHY TA RYRYPY3HU
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Memoto po6oTu 6yJI0 BUSABUTH T'€H 3€JIEHOTO (DJIyopecIiieHTHOTo IpoTeiny (g7p) pisuux Mmogudikaiii
Yy TPaHCTEeHHUX POCJMHAX TIOTIOHY Ta KYKYPYA3U METOAOM IoJriMepasHoi jJaHIorosoi peakiii (ITJIP).

Memodu. Bugninenua cymapuoi INHK, IIJIP, emextpodopes IIHK B araposmomy reui,
OioiH(popMaTHUHI METOIH.

Pesyavmamu. Ilpu ananizi merogom IIJIP [THK TioTIOHY i KYKYPYZ3u Ha IPUCYTHICTH reHa gfp
IUKOro TUIy abo MmyTauTHOT0o S65Tpgfp BUKOpuCTOBYBaIu TPU napu npaiimepis. Ilapa npaiimepis
gfplF-gfplR B3aemogisana suiiie 3 reHOM gfp AUKOro Tuny. 3a gomoMoroio mpaimepis gfp2F-gfp2R
MO’KHA 0yJIO BUABJIATHU I'eH gfp pisHuUX Monudikamniil AK y reHOMi TIOTIOHY, TaK i KyKypyasu. Ilapa
npaiimepiB gfp3F-gfp3R Bzaemogiana 3 mogudikopanum reaom S65Tpgfp, mo 3Haxonusca B JJHE
TIOTIOHY, ajie He KYKYPYA3H.

BucHnosku. BepudikoBano mpaliMmepu AJs AeTeKIii rerepojoriuHoro rema gfp, aKi € AK
BY3bKO crenupivaEuMu (MOKHA BUABUTHU JUIle OOHY Moaudikalliio reHa), Tak i yHiBepcaJlbHUMU
(MmosxkHA BuABUTHU Oinbin omgHiel moxgudikarii rera). I[lokasano, o napa npaiimepiB gfp2F-gfp2R
€ yHiBepcaJabHOIO AJid BusABJIeHHS reHa gfp meromom ILJIP sk y pocinH TIOTIOHY, TaK i KYKypyAsHU.
PesynbTaTu, orpumani 3a gomomoro gfp2F-gfp2R maniiino BiATBOPIOOTHCS, TOMY I IIapa IpaiMepis
PEKOMEeHJayeThCA AJIA 3araJJbHOT0 3aCTOCYBAaHHA.

Kntwouwosi crosa: gfp; S65Tpgfp; Zea mays L.; Nicotiana tabacum L.; I1JIP; BusiBJieHHs TpaHCTeHA;
MOJIEKYJIAPHI MapKepu.
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