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New coronavirus infection burst had 
happened in Republic of China with epicenter 
in Wuhan (Hubei Province) in late 2019. The 
World Health Organization officially named 
it COVID-19 (“Corona virus disease 2019”) 
on February 11, 2020. The International 
Committee on Viruses Taxonomy had 
assigned the official name to the agent of 
this infection — SARS-CoV-2 on February 
11, 2020. 

The information on epidemiology, clinical 
features, prevention, and treatment of 
this disease is limited until now. The most 
common clinical manifestation of the new 
variant of coronavirus strain infection was 
bilateral pneumonia: the development of acute 
respiratory distress syndrome was registered 
in 3–4% of patients [1]. This potentially severe 
acute respiratory infection causes dangerous 
disease [2]. It can occur both in the form of 
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acute respiratory viral infection with mild 
course [3, 4] and in severe form with such 
specific complications as viral pneumonia 
caused acute respiratory distress syndrome or 
respiratory failure with a risk of the death [5]. 
However, full clinical picture is not yet clear 
[6]. There are no specific antiviral agents for 
the treatment or prophylaxis of this disease [7].  
In most cases (approximately 80%) it turns 
out that no specific treatment is required, 
and recovery takes place on its own [2, 8]. In 
severe cases, specific means and methods are 
used to maintain functions of vital organs 
[9]. Respiratory insufficiency development 
is also possible against the background 
of this infection [3]. Less than a third of 
patients demonstrated the development of 
acute respiratory distress-syndrome [2]. In 
case of acute respiratory distress-syndrome, 
tachycardia, tachypnoea or cyanosis may also 
be appeared to accompany hypoxia [6].

Inflammatory processes can influence on 
cardiovascular system resulting in arrhythmias 
and myocarditis. Acute heart insufficiency 
is mostly found in severely or critically ill 
patients. Infection can occure long-term 
influences on the health of cardiovascular 
system. In case of patients with cardiovascular 
diseases in anamnesis, strict monitoring of 
their conditions may be required [2].

There is no specific antiviral therapy 
against SARS-CoV-2 virus [9] and there is 
no evidence of effective immunomodulating 
therapy [10]. Patients receive mainly 
symptomatic and supportive therapy. In 
severe cases, treatment aims to maintain vital 
functions of organs [9].

Although unlicensed drugs and experimental 
therapies are used today in practice of 
coronaviral disease treatment, for example, 
with the use of antiviral agents, such treatment 
should be carried out within the framework 
of ethically based clinical trials [2]. Critically 
important is the use of tools that are justified 
both ethically and scientific researches [11, 12]. 

Bases for used methodology. Therapy 
prescriptions should not be based on 
hypotheses, but on clinical studies that 
confirm the effectiveness of such therapy. 
Hypotheses, however, may be the basis for a 
planned clinical trial [13]. Therefore, it seems 
reasonable to apply simulation modeling of 
coronaviral disease course and exposure to 
pharmacological drugs. 

The methods of information technologies 
and mathematical modeling complement 
those of experimental biology and medicine. 
Modern diagnostic methods, whatever perfect 

they may be, give only a “slice” of current 
organism state. Therefore, the mathematical 
modeling of organism functional systems and 
an organism as a whole became widespread in 
the last third of the last century, allowing to 
simulate various processes taking place in the 
organism and to study these processes at the 
level inaccessible to the modern methodical 
diagnosis level, for example, to simulate 
extreme organism disturbances and forecast 
the functional state of organs and systems with 
this disturbance. 

Mathematic model of functional 
respiratory system, developed by the united 
efforts of the scientists from Glushkov 
Institute of Cybernetics and Bogomoletz 
Institute of Physiology both of the National 
Academy of Sciences of Ukraine was based 
exactly on these principles.

The purpose of the work was to create 
integrated mathematical model to simulate 
the course of the disease caused by SARS-
CoV-2 virus and pharmacological correction of 
complications — organism hypoxic states.

Mathematical models of respiration 
and blood circulation systems

Many mathematical models of various 
functional systems and organism as a whole 
exist nowadays. Let’s observe the models related 
to the respiratory and blood circulatory systems 
because of several reasons. First, according to 
the current information, exactly these systems 
are the most affected by the SARS-CoV-2 virus 
[14–27]. Secondly, in the theory of adaptation 
developed by Meyerson, exactly these systems 
responded most noticeably to changes of living 
conditions [28, 29]. Thirdly, in a number 
of publications there were shown that if we 
consider the human organism from the point 
of view of reliability theory, and assume it as 
a “chain with a weak link”, then such “weak 
links” are exactly the respiratory and blood 
circulatory systems [30–37].

First of all, Gray model should be 
highlighted, in which the respiratory system 
was presented as a feedback system and thus 
the background for studying the relationships 
between alveolar ventilation V and oxygen 
pressures pO2, carbon dioxide pCO2 and the 
arterial blood acidity pH was laid [38]. 

The next qualitatively important step was 
the model of Grodins, who suggested that the 
respiratory system should be considered as 
a dynamic system, which made it possible to 
use the appropriate mathematical apparatus 
[39, 40]. The ventilation dynamics was studied 
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when the concentration of carbon dioxide 
in respiratory system changed. Therewith 
elements of system analysis were used. The 
control and controlled systems responsible 
for process of gas exchange were given up, 
tissue reservoirs of an organism in which 
oxygen was consumed and carbon dioxide 
was released were subdivided. Two reservoirs 
were identified as “brain” and “non-brain”. 
The first reservoir included vitally important 
organs, the second one — peripheral organs 
and tissues. Grodins derived the differential 
equations describing the dynamics of partial 
pressures and tensions of respiratory gases 
in the lungs, blood and tissues, basing on the 
principles of material balance and continuity 
of the flow [39, 40]. A significant disadvantage 
of the model was the assumption that during 
inspiration, a constant pCO2 was maintained in 
the respiratory mixture, alveoli and blood.

Mathematical models of respiratory 
and blood circulatory systems: 

their use for the solution of practical 
and theoretical problems 

in medicine and physiology

Further development of Grodins model was 
a model of mass transfer and mass exchange of 
respiratory gases in human body and dolphin, 
proposed by Kolchinskaya and Misyura [41]. 
The model considers the process of mass 
transfer and mass exchange of respiratory 
gases through the alveolar-capillary and 
capillar-tissue membranes, taking into 
account their structural and functional 
pequliarities. This approach enabled to study 
gases transportation in human body during 
respiratory cycle: inspiration, expiration and 
pause, taking into account the biophysical and 
biochemical characteristics of the processes. 
Besides, tissue reservoirs were differentiated 
in the model, tissues of brain, heart, liver, 
kidneys, skeletal muscles, and etc. were 
defined. This made it possible to elaborate 
the models of gases saturation and to study 
the process of hypoxia development in them 
[41]. The proposed model contained equations 
for determining of alveolar ventilation and 
systemic blood flow obtained on the basis 
of experimental data. However in order to 
calculate oxygen and carbon dioxide regimes 
of human organism under changes in living 
conditions, it was required the data that 
were impossible to obtain at the current 
methodological level of bioexperiment. 
Therefore, it is quite problematic to use such 
type of models for the cases upon changing the 

levels of energy consumption, environmental 
conditions without solving the problem 
concerning control of respiratory system 
function.

In addition, blood circulatory system, 
contrary to respiratory one, is multifunctional, 
and this causes certain difficulties linked 
with determination of optimality criterion. 
Consequently, the concept of organism’s 
oxygen regimes regulation formulated by 
Kolchinskaya and Lauer was an actual one 
[42]. According to this concept, the regulation 
in organism is carried out by one complex 
system that coordinates joint functioning of 
various mechanisms and subordinates this 
system to its main task — to maintain optimal 
oxygen parameters along the oxygen pathes 
in organism. Herewith, the delivery speed 
should match the oxygen demand in tissues. 
In accordance with this concept, mathematical 
models should consider the united action of 
the systems of external respiration, blood 
circulation, and tissue respiration, aimed on 
the providing of tissues demand in oxygen.

There are numerous other mathematical 
models [43–52]. Let’s observe exactly the models 
developed by Onopchuk and representatives of 
his scientific school [37, 53–59]. Basing on above-
described approach, few mathematical models of 
heat transfer and heat exchange [60–62], immune 
system [63–65], system of energy supply [66] and 
erythropoesis [67, 68] were developed.

These models were used to solve a number of 
practical and theoretical problems in medicine 
and physiology. Namely, the theoretical 
problems linked with investigations of cerebral 
blood circulatory tensions in operators of 
continuous interaction system were solved 
[69–74], compromise resolution of conflict 
situations in the problem of optimal control 
in decisions making in difficult situations 
was studied [37, 75–77], the role of hypoxia, 
hypercapnia and hypometabolism during 
adaptation of the respiratory system to 
intensive muscular activity and stay in 
conditions of hypoxic hypoxia were investigated 
[78–82], mathematical models of short-term, 
medium-term and long-term adaptation of the 
respiratory system to extreme environmental 
influences were developed [35, 37, 83, 84], 
parameters of self-organization of the rescue 
command members breathing system during 
short-term and medium-term adaptation to 
hypoxic hypoxia were studied [35, 82], the tasks 
of modeling of the hypoxic and hypercapnic 
stages of training athletes were considered [85, 
86], dependence of parameters of functional 
self-organization for high qualification 
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women-athletes on the hormonal status of their 
organisms were studied [87–89], algorithm for 
predicting of fatigue development in highly 
skilled athletes with refined muscular activity 
was constructed [90, 91], mathematic models 
for the development of hypoxia at coronary 
heart disease were developed [92–97], algorithm 
for the selection of data models and algorithms 
for their processing to build an integrated 
estimation of the reliability and performance of 
athletes was proposed [98–101]. Separately, it 
is necessary to highlight the use of these models 
in sports of the highest achievements, for the 
sportsmen specializing in cyclic sports [102], 
martial arts [103–107], alpinism [108], their 
practical application in research at the Elbrus 
Medical and Biological Station of Bogomoletz 
Institute of Physiology of the National Academy 
of Sciences of Ukraine [109–121], for solution 
of a broad range of problems connected with 
the examination of operators of continuously 
interacting systems and flying personnel.

Separately, it is necessary to write about 
the works [122–124] associated with the 
development of software for the improving 
of the tools and methods for operational data 
mining, processing and analysis of functional 
diagnostic data, and the person’s stay in 
hyperbaric environment [125, 126].

There is also a number of works devoted 
to the research and identification of organism 
reserves under the extreme disturbances [127–
132] and optimization of the recovery and 
rehabilitation processes after the extreme loads 
on an organism [133,134], thermoregulation 
processes under the extreme influences [116].

Therefore, the idea to apply such models 
for new class of problems related to studying 

and treatment of infectious organism lesions 
infected with SARS-CoV-2 seems quite 
reasonable and appropriate.

Integrated model of the functional system 
of respiration, blood circulation, heat 

transfer, and immune response

To simulate the hypoxic state caused 
by SARS-CoV-2 virus we proposed to use 
integrated mathematical model of the 
functional respiratory and blood circulatory 
system, thermoregulation, and immune 
response to predict the course of viral disease 
[37, 54, 55, 57, 60–65].

When studying the organism adaptation 
to one or another disturbances, including 
infectious disease, it is advisable to take into 
consideration the possibility of participation 
of intersystem mechanisms in process of 
organism state stabilizing, taking into account 
both intra-systemic and intersystemic conflict 
situations. In response to the environment 
disturbing influence (external or internal), 
all organism functional systems react against 
it to some extent, trying to stabilize the 
organism state, despite the contradictions 
between goals and interests. The structural 
scheme of complex mathematical model for 
investigation of the main functional systems 
(respiration, blood circulation, heat transfer, 
immune), their pharmacological correction as 
well as mechanisms of their interaction and 
interconnection during the life activities in 
extreme conditions of the external and internal 
environment was shown on Fig. 1.

Let’s give a description of the models 
of individual functional systems. Briefly, 

Fig. 1. Integrated model of the functional system of respiration, blood circulation, 
heat transfer, and immune response



34

BIOTECHNOLOGIA  ACTA, V. 13, No 3, 2020

the mathematical model of the functional 
respiratory system could be represented as 
follows. Mathematical model of respiratory 
and blood circulatory system is a controlled 
dynamic system, the phase state of which is 
characterized by partial pressures and tensions 
of respiratory gases in each element of the 
system. 

The controlled part of the model is based on 
differential equations describing changes in 
average partial pressures of respiratory gases 
in each part of respiratory cycle — during 
inspiration, expiration and pause. Briefly, the 
model can be submitted as follows:

, (1)

, (2)

where the functions  and are described in 
detail in [54, 55], V is ventilation,  is a degree 
of hemoglobin saturation with oxygen, Q is 
volumetric velocity of systemic and Qti

 — local 
blood flows, qti

O2 is oxygen consumption rate 
by i-th tissue reservoir, qti

O2 is the rate of 
carbon dioxide release in i-th tissue reservoir. 
The velocities Gti

O2 of oxygen flows from the 
blood into the tissue and Gti

O2 of carbon dioxide 
from the tissue into the blood are determined 
by the ratio:

Gti
 = Dti

Sti
(pcti 

– pti
),                     (3)

where Dti
 are gas permeability coefficients 

through the airhematic barrier, Sti 
is gas 

exchange surface area.
In this model, respiratory, cardiac and 

vascular smooth muscles are the active 
mechanisms of self-regulation. Accordinly 
V, Q, Qti

, i = 1,m are the control parameters 
in the dynamic system, which are determined 
as a result of solving the task of optimal 
output of the disturbed dynamic system into 
a stable equilibrium state characterized by the 
following retios:

,           (4)

.           (5)

T h e 
optimal values are those that provide a 
minimum of the functional:

 
(6)

under the restrictions:

(7)

In (7) 1 2 are organism sensitivity 
coefficients to the oxygen deficiency and 
carbon dioxide excess, ti 

characterize 
functionally the morphological features of 
tissue region.

The dynamics of infectious lesion of 
organism was given by Marchuk as a system of 
ordinary nonlinear differential equations with 
delay [135]. Let’s consider one of the equations 
of this system:

(8)

where m() is relative characteristics of 
an affected organ. If M is characteristics 
of healthy organ (mass or area), and M is 
corresponding characteristic of the healthy 
part of affected organ, then

 
(9)

is a relative characteristic of lesion of an organ-
target. The factor (1 – m) in (8) determines 
the effect of antigens on unaffected part of an 
organ-target.

Decrease in this characteristic occur due to 
the regenerative activity of an organism with 
mcoefficient characterizing the rate of mass 
recovery of the affected organ.

The pathological state of an organism that 
developed due to the infectious lesion can be 
considered as disturbance during modeling 
of blood circulatory system. Then  and  m in 
(8) are the functions depended on Qti

. When 
considering joint modeling of respiratory, 
circulatory and immune systems and their 
regulation, it is necessary to add the term 

(10)

to the quality criterion of regulation (6) 
into the integration element, where 

i
 is a 

coefficient characterizing the influence degree 
of the simulated disease type on the level of gas 
homeostasis. The function fi(m, V)determines 
the damage degree of target-organ at current 
moment. At control points, this function was 
taken as:

(11)

It could be assumed that the flow of energy 
processes in the tissues of an organ-target is 
supplied only due to its unaffected part. Then 
the mass of metabolizing part of the organ will 
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be determined:

(12)

where 0
it

v  is a total mass (volume) of tissues of 
healthy organ. 

In case of infectious disease, it is natural to 
assume a reaction of thermoregulatory system. 
Let’s complete our model of the dynamics of 
the course of infectious disease by introducing 
the variable T (the temperature of internal 
sphere of organism [136, 137]) in the equation 
below:

 
(13)

where KT, T are coefficients, F is 
concentration of F complexes, (F)* is 
maximal permissible concentration of 
complexes,  T*

t   k  
 is normal temperature of core 

of organism, is Heaviside function. In this 
case, it was natural to put the coefficients 
in model (8)–(12) in the form of functions 
depending on Ttk

:

(14)
 

(15)

where ( ) , ( ) , ,
k k t tk kt t T TT T b         are coef fi cients.

It is natural to assume that at the initial 
stage of disease, the passive mechanisms of 
self-regulation such as erythropoesis, release 
of hemoglobin and mioglobin into blood were 
involved. An increase of the content of red 
blood cells and the content of hemoglobin 
in them is powerful regulatory mechanism 
for maintaining of organism stable state in 
conditions that lead to oxygen deficiency under 
the various disturbances. In [67] the linear 
dependences of erytropoetin (EPO), Ht and  Hb 
were obtained and than they were introduced 
into the mathematical model of functional 
respiratory and blood circulatory system to 
enhance the regulation of respiratory system 
main function in hypoxia.

Further, due to the fact that severe hypoxia 
develops in organism as a result of lung 
damage, the injection of antihypoxants into 
the organism is advisable in order to study the 
possible ways of organism state relief in case 
of hypoxia. The integrated model described 
above for this case has to be supplemented by 
the equations of transport of pharmacological 
preparations in organism in forms, suggested 

previously [107, 118, 138]. The algorithm for 
the application of this approach is given in Fig. 
2. 

Our developed mathematical model 
of pharmacological correction of hypoxic 
states clarifies the role of pharmacological 
preparation use for prevention of hypoxic 
states development in organism (for 
organism state perfection). It was assumed 
that the withdrawal of antihypoxant f from 
the organism is carried out through the 
kidneys. It was assumed as well that we use 
pharmacological preparations that improve 
oxygen permeability through the capillary 
tissue membranes of blood vessels. According 
to this scheme it was assumed that the most 
effective was intravenous administration of 
antihypoxant, although the model enabled 
to simulate as well as respiratory, oral 
and intramuscular way of antihypoxants 
administration. 

Procedure for the work with the model

1. Patient examination is carried out.
2. The data obtained from the survey are 

the source for calculation of organism oxygen 
regimes [121, 122].

3. The data obtained during patient 
examination and some data obtained as a 
result of calculation of organism oxygen 
regimes were taken as input source data in the 
models of functional respiratory system, blood 
circulatory system and thermoregulation. In 
such a way the models individualization was 
fulfilled.

4. Further, using the model of immune 
response, the effect of virus is simulated; 
with the interaction and interinfluence of the 
models, the partial pressures and tensions of 
respiratory gases in all parts of respiratory 
system, alveolar ventilation and systemic blood 
flows are calculated.

5. The next step is to simulate the effects 
of pharmacological preparations and, 
consequently, the values of the same indicators 
have to be calculated again.

6. The obtained data are analyzed and 
further, in case of unsatisfactory result, 
another effect of antihypoxant is simulated, or 
if the obtained indicators are acceptable, then 
this scheme of pharmacological preparation 
use is chosen.

Thus in this publication, the results of 
development of comprehensive integrated 
mathematical model for simulation of 
the course of disease caused by SARS-
CoV-2 were suggested. It could be used 
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for pharmacological correction of hypoxic 
states that occur with the complication of 
disease course as well. The bases for the 
used methodology were observed as well 
as mathematical models of respiration and 
blood circulation systems. The information 
about the developed models of respiratory 
and blood circulatory systems and their use 
for the solution of practical and theoretical 
problems in medicine and physiology were 
suggested. For simulation of hypoxic state 
caused by SARS-CoV-2, we proposed to 
use the integrated mathematical model of 
functional respiratory and blood circulatory 
systems, thermoregulation, and immune 
response one to forecast the course of viral 
disease. The structural scheme of complex 
mathematical model for the investigations 
of main functional systems (respiration, 
blood circulation, heat transfer, and immune 
response), their pharmacological correction 
as well as mechanisms of their interaction 
and interconnection during the life activities 
in extreme conditions of the external and 
internal environment was demonstrated. In 
the result, the complex of information support 
for imitation of viral disease course as well as 
for it pharmacological correction caused by 
the organism hypoxic states were developed.

For today, this mathematical integrated 
model has theoretical significance only. It is 
based on the information about the clinically 
registered manifestations of coronaviral 
(SARS-CoV-2) disease available in the public 
domain. Therefore, this model requires further 
perfection. In particular, it seems necessary 
to clarify some characteristics of respiratory 
gases transport through the alveolar-capillary 
membrane, peculiarities of gas exchange in 
the alveolar space, which cause the decrease of 
blood oxygenation. These are the problems that 
need to be solved in close collaboration with the 
professionals in medicine. At the same time, 
the imitation on this model the development 
of infectious disease and associated hypoxic 
state is one of the possible and quite effective 
tool for solving the tasks associated with 
the support of patients in acute hypoxic 
respiratory and heart failure caused by the 
complications of viral (SARS-CoV-2) disease.

“To develop mathematical models of the 
integration organisms of functional systems 
for a body and methods of integration of their 
mathematical models to maintain the reliability 
and safety of human life in extreme conditions” 
(State registration number 0114U001052). 
2014–2018 Research work B.F.170.09.

Fig. 2. Scheme of mathematical model for simulating the course of viral disease and its pharmacological 
correction: Hb, BH — concentrations of hemoglobin and buffer bases in blood; Q — volurimetric velocity of 
systemic blood flow; Qti — volurimetric velocity of local blood flows; ORO — oxygen regimes of organism; 

 — alveolar ventilation (air volume that pass through alveolar space during 1 min)
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МОДЕЛЬ ДЛЯ ІМІТАЦІЇ ПЕРЕБІГУ 
ВІРУСНОГО ЗАХВОРЮВАННЯ ТА 
КОРЕКЦІЇ СПРИЧИНЕНОГО НИМ 
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Метою роботи було створення комплексної 
математичної моделі, що імітує перебіг захво-
рювання, спричиненого вірусом SARS-CoV-2, 
та фармакологічної корекції гіпоксичних станів 
організму в разі ускладнення цього захворюван-
ня. В цій роботі було використано методи мате-
матичного моделювання та теорії оптимального 
керування рухомими об’єктами. Запропонована 
математична модель складалася з математич-
них моделей функціональних систем дихання 
та кровообігу, терморегуляції, імунної відповіді, 
еритропоезу та фармакологічної корекції. Для 
цієї моделі було взято індивідуальні дані пацієн-
та і здійснено імітацію вірусного захворювання. 
Прогнозували реакції органів дихання та крово-
обігу: розраховано парціальний тиск дихальних 
газів у альвеолярних просторах та їхню напругу 
в крові легеневих капілярів, артеріальної та змі-
шаної венозної крові та тканинної рідини. Далі 
імітували ін’єкцію антигіпоксанту та розрахо-
вували значення тих самих параметрів. Таким 
чином можна було вибрати найбільш оптималь-
ний спосіб корекції гіпоксичного стану для будь-
якої людини. На сьогодні ця модель є суто тео-
ретичною, оскільки моделі системи дихання та 
кровообігу було розроблено на усереднені дані, і 
вони не враховують особливостей окремих осіб, 
інфікованих SARS-CoV-2. Зокрема, це стосується 
газообміну в альвеолярному просторі можливих 
особливостей проникності дихальних газів через 
альвеолярно-капілярну мембрану. Однак це один 
із можливих напрямів вирішення складних за-
вдань, пов’язаних з лікуванням захворювання, 
спричиненого вірусом SARS-CoV-2. У результаті 
було розроблено комплекс інформаційної під-
тримки для імітації перебігу вірусних захворю-
вань, а також фармакологічної корекції спричи-
нених ними гіпоксичних станів. 

Ключові слова: вірус SARS-CoV-2, модель 
імунного відгуку, математична модель дихаль-
ної системи, гіпоксичний стан, інфекційне 
ураження.
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Целью работы было создание комплексной 
математической модели, имитирующей течение 
заболевания, вызванного вирусом SARS-CoV-2, 
и фармакологической коррекции гипоксических 
состояний организма, возникающих в случае ос-
ложнения этого заболевания. В этой работе ис-
пользовались методы математического модели-
рования и теории оптимального управления дви-
жущимися объектами. Предлагаемая математи-
ческая модель состояла из математических моде-
лей функциональных систем дыхания и кровоо-
бращения, терморегуляции, иммунного ответа, 
эритропоэза и фармакологической коррекции. 
Для этой модели были взяты индивидуальные 
данные пациента и смоделирован эффект в виде 
вирусного заболевания. Спрогнозированы реак-
ции дыхательной и кровеносной систем: рассчи-
таны парциальное давление дыхательных газов 
в альвеолярных пространствах и их напряжение 
в крови капилляров легких, артериальной и сме-
шанной венозной крови и тканевой жидкости. 
Далее имитировали инъекцию антигипоксанта 
и рассчитывали значения тех же параметров. 
Таким образом можно было выбрать наиболее 
оптимальный способ коррекции гипоксического 
состояния для среднестатистического человека. 
На сегодняшний день эта модель является чисто 
теоретической, поскольку модели системы дыха-
ния и кровообращения были разработаны  усред-
ненные данные, и не учитывающие особенности 
отдельных лиц, инфицированных SARS-CoV-2. 
В частности, это касается газообмена в альвео-
лярном пространстве и возможных особенностей 
проницаемости дыхательных газов через альвео-
лярно-капиллярную мембрану. Однако это одно 
из возможных направлений решения сложных 
задач, связанных с лечением заболевания, вы-
званного вирусом SARS-CoV-2. В результате был 
разработан комплекс информационной поддерж-
ки для имитации течения вирусных заболева-
ний, а также фармакологической коррекции вы-
званных ими гипоксических состояний. 

Ключевые слова: вирус SARS-CoV-2, модель 
иммунного отклика, математическая модель 
дыхательной системы, гипоксическое состоя-
ние, инфекционное поражение.




