Biotechnologia Acta V. 13, No 5, 2020
P. 5-18, Bibliography 118, English
Universal Decimal Classification: 519.8.612.007
https://doi.org/10.15407/biotech13.05.005

MATHEMATICAL MODELLING OF IMMUNE PROCESSES AND ITS APPLICATION

N. I. Aralova ¹, O. M. Klyuchko ², V. I. Mashkin ¹, I. V. Mashkina ¹, T. A. Semchik ¹

¹Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine, Kyiv
The aim of the study was to develop a mathematical model to research hypoxic states in case of simulation of an organism infectious lesions. The model is based on the methods of mathematical modeling and the theory of optimal control of moving objects. The processes of organism damage are simulated with the mathematical model of immune response developed by G.I. Marchuk and the members of his scientific school, adapted to current conditions. This model is based on Burnet’s clone selection theory of the determining role of antigen. Simulation results using the model are presented. The dependencies of infectious courses on the volumetric velocity of systemic blood flow is analyzed on the complex mathematical model of immune response, respiratory and blood circulation systems. The immune system is shown to be rather sensitive to the changes in blood flow via capillaries. Thus, the organ blood flows can be used as parameters for the model by which the respiratory, immune response, and blood circulation systems interact and interplay.

Key words: mathematical model of immune response, functional respiratory system, simulation of infectious disease course, integrated mathematical model, interaction of functional systems of organism.

11. Marchuk G. I. Mathematical models in immunology. Computational methods and
experiments.

15. Cohen S. A model for the mechanism of antibody induction and tolerance, with specific attention to the affinity characteristics of antibodies produced during the immune response.
https://doi.org/10.1016/S0022-5193(05)80142-0

https://doi.org/10.1007/978-1-4615-9011-8_40

https://doi.org/10.1016/0022-5193(70)90019-6

https://doi.org/10.1016/0022-5193(71)90071-3

(6), 1095–1098. (In Russian).

41. **Merrill S. I.** A model of the stimulation of B cells by replicating antigen, II. *Math. Biosci.*
https://doi.org/10.1016/0022-5193(78)90071-8

43. **Stepanova N. V., Chernavsky D. S.** Mathematical model of immunosuppression caused by systemic action of the tumor on organism. *Matematiche skoe modelirovanie v immunologii i medicine.* Moskva: Mir.

https://doi.org/10.1007/978-3-319-72317-4

47. **Asachenkov A. L.** The simplest model of the influence of the temperature response on the
dynamics of the immune response.

Matematicheskoe modelirovanie v immunologii i medicine. Novosibirsk: Nauka.

Moskva: ICM RAS.

https://doi.org/10.1051/mmnp/201712504

https://doi.org/10.1080/17445760.2017.1363203

89. Nechepurenko Yu., Khristichenko M., Grebennikov D., Bocharov G. Bistability analysis of virus infection models with time delays. *Discrete and Continuous Dynamical System.*

98. Nanshan Chen, Min Zhou, Xuan Dong, Jieming Qu, Fengyun Gong, Yang Han, Yang Qiu, Jingli Wang, Ying Liu, Yuan Wei, Jia ' An Xia, Ting Yu, Xinxin Zhang, Li Zhang. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet*. 2020, 395 (10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7

100. Semchyk T. A. Mathematical model of the hypoxia course process under infectious diseases, the ischemic heart diseases and their analysis. *Theases for the obtaining the scientific degree of Candidate of Technical Sciences on speciality 01. 05. 02 – mathematical modeling and computational methods.* V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine. Kyiv. 2007, 20 p.

101. Onopchuk Yu. N. Homeostasis of functional respiratory system as a result of intersystem and system-medium informational interaction. *Bioecomedicine. Uniform information space. Ed. by V. I. Gritsenko*

103. Aralova N. I., Aralova A. A. Mathematical models of conflict controlled processes under functional self-organization of the respiratory system. *Cyb. comp. eng.* 2019, 3 (197), 65–79. https://doi.org/10.15407/kvt197.03.065

