The purpose of the present work was to analyse the prototypes of information expert systems, their structure, functions and practical application, and to develop a new one for solving practical problems in biotechnology, laboratory practice and environmental protection. The observed prototypes were developed for the use in genetic studies, agricultural production, nature protection from pests and environmental pollutants, for works in medicine, and etc. During the work, following methods were used such as methods of comparative research of the samples of technical devices, imitation and program modeling, which were based on numerical results obtained in experiments with the recording of chemosensitive transmembrane electrical currents in neurons in voltage clamp mode. As a result, an original expert system was developed. It was coupled with a detector group, databases and interface. The developed expert system was able to distinguish automatically the certain types of chemicals at the input, to display their identification data and, if necessary, the reports about their harmfulness. Conclusions were done about the practical value of these data for the elaboration of new electronic expert systems for monitoring the presence of harmful
substances in the environment. It was also discussed the possibility of developed expert system application for new methods of qualitative and quantitative analysis of some organic compounds.

**Key words:** biological and medical expert systems, electronic informational systems, bioinformatics, databases.


34. Onopchuk Yu. M., Klyuchko O. M., Beloshitsky P. V. Development of mathematical models basing on researches of Ukrainian scientists at Elbrus. 

35. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of adaptation problems by Ukrainian scientists in Prielbrussie. 

36. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of hypoxia problems by Ukrainian scientists in Elbrus region. 

37. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of medical and biological research of Ukrainian scientists at Elbrus. 

38. Belan P., Gerasimenko O., Petersen O. H., Tepikin A. Localization of Ca2+ extrusion sites in pancreatic acinar cells. 
   J. Biol. Chem. 
   6, V. 271, P. 7615–7619. 
   https://doi.org/10.1074/jbc.271.13.7615


50. Toga A. W., Thompson P. M. The role of image registration in brain mapping. *Image Vis. Comp.* 2001, 19 (1–2), 3–24. [https://doi.org/10.1016/S0262-8856(00)00055-X](https://doi.org/10.1016/S0262-8856(00)00055-X)


81. Ko J. H., Ko E. A., Gu W., Lim I., Bang H., Zhou T. Expression profiling of ion channel
genes predicts clinical outcome in breast cancer.
Mol. Cancer.
2013, 12 (1), 106.
https://doi.org/10.1186/1476-4598-12-106

2015, 22 (1), 48.

SpringerPlus.
2015, 4 (1), 611.

84. Onopchuk Yu. M., Biloshitsky P. V., Klyuchko O. M. Development of mathematical models based on the results of researches of Ukrainian scientists at Elbrus.
Visnyk Nat.

Int.
https://doi.org/10.3126/ijasbt.v5i2.17614

86. Zaslavsky L., Ciuko S., Fedorov B., Tatusova T. Clustering analysis of proteins from microbial genomes at multiple levels of resolution.
BMC Bioinform
https://doi.org/10.1093/bioinformatics/btt302


https://doi.org/10.1016/S0010-4825(02)00012-4


https://doi.org/10.1016/j.compag.2003.12.003
https://doi.org/10.1016/j.shpsc.2004.03.011


2007.

https://doi.org/10.1016/S0022-2011(03)00089-2

https://doi.org/10.1016/j.jenvman.2004.08.017

https://doi.org/10.1016/j.jenvman.2004.08.017

neuroscientific knowledge management system using brain atlases. 
https://doi.org/10.1016/S0925-2312(01)00520-3

100. Butenko S., Wilhelm W. E. Clique-detection models in computational biochemistry and genomics. 

101. Carro S. A., Scharcanski J. Framework for medical visual information exchange on the WEB. 

https://doi.org/10.1016/j.dss.2006.01.004

103. Chen M., Hofestäd R. A medical bioinformatics approach for metabolic disorders: Biomedical data prediction, modeling, and systematic analysis. 
https://doi.org/10.1016/j.jbi.2005.05.005

https://doi.org/10.1016/j.asoc.2005.11.003


[https://doi.org/10.1016/S0166-1280(02)00618-8](https://doi.org/10.1016/S0166-1280(02)00618-8)

[https://doi.org/10.1016/j.fss.2006.01.001](https://doi.org/10.1016/j.fss.2006.01.001)

[https://doi.org/10.1016/j.im.2004.08.005](https://doi.org/10.1016/j.im.2004.08.005)

[https://doi.org/10.1016/S0959-4388(02)00361-6](https://doi.org/10.1016/S0959-4388(02)00361-6)
https://doi.org/10.1016/j.jbi.2005.09.004

https://doi.org/10.1016/S0010-4655(01)00273-9

https://doi.org/10.1016/j.semcdb.2004.09.008

https://doi.org/10.1016/j.artmed.2004.01.017

https://doi.org/10.1016/j.tree.2004.11.017

https://doi.org/10.1016/j.eswa.2005.01.011

Curr. Opin. Pharmacol. 2003, 3 (2), 114–120. 
https://doi.org/10.1016/S1471-4892(03)00005-5


121. Glenisson P., Glänzel W., Janssens F., Moor B. D. Combining full text and bibliometric information in mapping scientific disciplines. 
https://doi.org/10.1016/j.ipm.2005.03.021


https://doi.org/10.1006/knac.1993.1008
2004, 159 (34), 155–165.
https://doi.org/10.1016/j.ins.2003.03.011

*J. Biomed. Inform.*
https://doi.org/10.1016/S1532-0464(03)00032-7

127. Horn W. AI in medicine on its way from knowledge-intensive to data-intensive systems. *Artificial Intelligence in Medicine*
Elsevier
2001, 23 (1), 512.
https://doi.org/10.1016/S0933-3657(01)00072-0

*Exp. Syst. Appl.* Elsevier
https://doi.org/10.1016/j.eswa.2005.09.083

*J. Cell Sci.*
https://doi.org/10.1242/jcs.02515

130. Johnson S. B., Friedman R. Bridging the gap between biological and clinical informatics in a graduate training program.
https://doi.org/10.1016/j.jbi.2006.02.011
https://doi.org/10.1016/j.neucom.2004.01.059

https://doi.org/10.1016/S0169-2607(03)00076-2

https://doi.org/10.1016/j.cmpb.2005.06.005

https://doi.org/10.1016/S0925-2312(02)00426-5

https://doi.org/10.1016/S0925-2312(02)00793-2

https://doi.org/10.1016/j.compbiomed.2004.12.003


Ontology-based integration of genomic and clinical databases.

*Comp. Biol. Med.*
https://doi.org/10.1016/j.compbiomed.2005.02.004


*Receptors and ion channels. Ed. by Ovchinnikov Y. A., Hucho F.*

Berlin-New York: Walter de Gruyter
. 1987, P. 127–137.


*Nalc hik (Russia), “Hypoxia: automatic analysis of hypoxic states of healthy people and sick ones.*


147. *Gonchar O., Klyuchko E., Mankovskaya I.* Role of complex nucleosides in the reversal of oxidative stress and metabolic disorders induced by acute nitrite poisoning.

*Indian J. Pharmacol.*
https://doi.org/10.4103/0253-7613.28208

148. *Gonchar O., Klyuchko E., Seredenko M., Oliynik S.* Corrections of prooxidant—antioxidant homeostasis of organism under hypoxia of different genesis by yackton, new...


160. Gonchar O., Klyuchko O., Seredenko M., Oliynyk B. Correction of metabolic disorders at hypoxia by new pharmacological preparations. 
*Mater. 3 FEPS Congress. Nice (France)*
. 2003, P. 228.

. 2003, P. 208.


. 1990, V. 2, P. 271.

[https://doi.org/10.1016/0304-3940(87)90453-8](https://doi.org/10.1016/0304-3940(87)90453-8)

165. Aralova N. I., Klyuchko O. M. Mathematic modeling of functional self-organization of pilots’ respiratory systems. “*Integrated intellectual robototechnical*


http://www.findpatent.ru/patent/137/1370136.html


176. Klyuchko O. M. Method of application of biotechnical monitoring system for bioindicators’ accounting with biosensor and sub-system for optical registration. Patent UA 129987 U, G01N33/00, C12Q 1/02, C12N 15/00. Priority: 27. 04. 2018,


[/spoiler]