ELECTRONIC DATABASES OF ARTHROPODS: METHODS AND APPLICATIONS

O. M. Klyuchko, Z. F. Klyuchko

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

"Biotechnologia Acta" V. 11, No 4, 2018
https://doi.org/10.15407/biotech11.04.028
P. 28-49, Bibliography 162, English
Universal Decimal Classification: 004:591.5:612:616-006

ELECTRONIC DATABASES OF ARTHROPODS: METHODS AND APPLICATIONS

O. M. Klyuchko ¹, Z. F. Klyuchko ²

¹Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the National Academy of Sciences of Ukraine, Kyiv
The purpose of the work was the examination of various databases construction as well as examination of possible errors. Peculiarities of biological objects which should be taken into account during databases design were analyzed. The methods for electronic collections with databases of biological organisms elaboration were studied. The appropriate algorithms for environmental conservation were analyzed and compared with some foreign analogs in order to study positive and negative experiences. The requirements for database with information about Noctuidae (Lepidoptera) and some Araneidae were formulated for the development of electronic information system “EcoIS”. The description of developed relational database with information about insects with analysis of selected object area were suggested taking into consideration the characteristics of biological objects and characteristics of information systems analogues. Conclusions concerning described new means with bioobjects databases and their application on the example of “EcoIS” system were done as well as some recommendations for the construction of databases with the information about living organisms basing on our experience.

**Key words:** bioindicators, electronic information systems, databases of Arthropods, databases of insects, Noctuidae (Lepidoptera), Araneidae.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018

{spoiler title=References}


5. Klyuchko O. M. Cluster analysis in biotechnology. *Biotechnol. acta*. 2017, 10 (5), 5–18. [https://doi.org/10.15407/biotech10.05.005](https://doi.org/10.15407/biotech10.05.005)

6. Klyuchko O. M. Technologies of brain images processing. *Biotechnol. acta*. 2017, 10 (6), 5–17. [https://doi.org/10.15407/biotech10.05.005](https://doi.org/10.15407/biotech10.05.005)


*Bull. NASU*

31. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu., Kolchinska A. Z. Results of research of higher nervous activity problems by Ukrainian scientists in Prielbrussie. 
*Bull. NASU*

*Bull. NASU*

*Bull. NASU*

34. Onopchuk Yu. M., Klyuchko O. M., Beloshitsky P. V. Development of mathematical models basing on researches of Ukrainian scientists at Elbrus. 
*Bull. NASU*

35. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of adaptation problems by Ukrainian scientists in Prielbrussie. 
*Bull. NASU*

36. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of research of hypoxia problems by Ukrainian scientists in Elbrus region.
37. Beloshitsky P. V., Klyuchko O. M., Onopchuk Yu. Results of medical and biological research of Ukrainian scientists at Elbrus. 
*Bull. NASU* 

*J. Biol. Chem* 


40. Jabs R., Pivneva T., Huttmann K. Synaptic transmission onto hippocampal glial cells with hGFAP promoter activity. 


43. Baert P., Meesen G., De Schynkel S., Poffijn A., Oostveldt P. V. Simultaneous in situ profiling of DNA lesion endpoints based on image cytometry and a single cell database approach. 
[https://doi.org/10.1016/j.micron.2005.01.005](https://doi.org/10.1016/j.micron.2005.01.005)


63. Steimann F. On the representation of roles in object-oriented and conceptual modelling. *Data Know. Engin*


75. Onopchuk Yu. M., Biloshitsky P. V., Klyuchko O. M. Development of mathematical models based on the results of researches of Ukrainian scientists at Elbrus. 
*Bull. NASU* 

*Int. J. Appl. Sci. Biotechnol* 
https://dx.doi.org/10.3126/ijasbt.v5i2.17614

77. Zaslavsky L., Ciuflo S., Fedorov B., Tatusova T. Clustering analysis of proteins from microbial genomes at multiple levels of resolution. 
*BMC Bioinform* 
2016, 17 (8), 276. Published online 2016 Aug 31. 
https://doi.org/10.1186/s12859-016-1112-8

https://doi.org/10.1093/bioinformatics/btt302

*J. Comput.* 2013, 8 (1), 1017. 
https://doi.org/10.1109/PAAP.2011.17

Protein Clusters. 
*The NCBI*
[https://doi.org/10.1016/S0010-4825(02)00012-4](https://doi.org/10.1016/S0010-4825(02)00012-4)


[https://doi.org/10.1016/j.shpsc.2004.03.011](https://doi.org/10.1016/j.shpsc.2004.03.011)

[https://doi.org/10.1016/S0933-3657(01)00072-0](https://doi.org/10.1016/S0933-3657(01)00072-0)


1760–1774.
https://doi.org/10.1016/j.fss.2006.01.001


Green, Elena Provenzano, Gordon Wishart, Sarah Pinder, Peter Watson, Florian Markowetz, Leigh Murphy, Ian Ellis, Arnie Purushotham, Anne-Lise Børresen-Dale, James D. Brenton, Simon Tavaré, Carlos Caldas, Samuel Aparicio


https://doi.org/10.1016/j.ins.2003.03.011


https://doi.org/10.1016/S1532-0464(03)00032-7


129. Masseroli M., Visconti A., Bano S. G., Pincirol F. He@lthCo-op: a web-based system to support distributed healthcare co-operative work.


152. Klyuchko O. M., Tzial-Tzialko V. I. Elaboration of new monitoring system for Ukrainian


157. Klyuchko Z. F., Klyuchko O. M. Analysis of moth fauna taxonomic structure (Lepidoptera: Noctuidae s. l.) of Ukraine according to monitoring data. Eversmannia.


162. Klyuchko O. M., Biletsky A. Ya., Navrotskyi D. O. Method of application of biotechnical
monitoring system with biosensor and sub-system for optical registration.

*UA Patent G01N33/00, C12Q 1/02, C12Q 1/02*

Priority: March 2018.

*Method of application of biotechnical monitoring system with biosensor and subsystem of optical registration.*

(In Ukrainian).

__________________________