Category: 1_2014(en)
Hits: 3914

ISSN 2410-7751 (Print)
ISSN 2410-776X (Online)

 1 2014


"Biotechnologia Acta" v. 7, no 1, 2014
https://doi.org/10.15407/biotech7.01.080
Р. 80-86, Bibliography 25, Ukrainian
Universal Decimal classification: 602.4:537.632: 576.3/.7

SEPARATION OF CELL POPULATIONS BY SUPER-PARAMAGNETIC PARTICLES WITH CONTROLLED SURFACE FUNCTIONALITY

Lootsik M. D.1, Boiko N. M.1, Mitina N. E.2, Klyuchivska O. Yu.1,
Lutsyk M. M.3, Konstantinova T. E.4, Zaichenko A. S.2, Stoika R. S.1

1Institute of Cell Biology of National Academy of Sciences of Ukraine, Lviv
2Lviv National Polytechnic University, Ukraine
3Danylo Halytsky National Medical University, Lviv, Ukraine
4Galkin Institute of Physics and Engineering of National Academy of Sciences of Ukraine, Donetsk

The recognition and isolation of specific mammalian cells by the biocompatible polymer coated super-paramagnetic particles with determined surface functionality were studied. The method of synthesis of nanoscaled particles on a core of iron III oxide (Fe2O3, magemit) coated with a polymer shell containing reactive oligoperoxide groups for attachment of ligands is described.

By using the developed superparamagnetic particles functionalized with peanut agglutinin (PNA) we have separated the sub-populations of PNA+ and PNA cells from ascites of murine Nemeth-Kellner lymphoma.

In another type of experiment, the particles were opsonized with proteins of the fetal calf serum that improved biocompatibility of the particles and their ingestion by cultivated murine macrophages J774.2. Macrophages loaded with the particles were effeciently separated from the particles free cells by using the magnet. Thus, the developed surface functionalized superparamagnetic particles showed to be a versatile tool for cell separation independent on the mode of particles’ binding with cell surface or their engulfment by the targeted cells.

Key words: super-paramagnetic particles, cell selection, NK/Ly lymphoma, macrophages J774.2.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2014

References

1. Lakhtin V. M., Afanasyev S. S., Lakhtin M. V. Nanotechnologies and perspectives of their employment in medicine and biology. Vestnik Ross. Akad. Med. Nauk. 2008, N 4, Р. 50–55. (In Russian).

2. Galkin O. Yu.,Bondarenko L. V., Grishyna A. S., Dugan O. M. Directed drug  delivery systems. Biotechnological aspects. Biotechnologiia. 2009, 2(1), 46–58. (In Ukrainian).

3. Ito A., Shinkai M., Honda H., Kobayashi T. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 2005, V. 100, 1–11.
https://doi.org/10.1263/jbb.100.1

4. Chomoucka J., Drbohlavova J., Huska D., Adam V., Kizek R. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 2010, V. 62, Р. 144–149.

5. ?ponarov?  D., Hor?k  D., Trchov? M., Jendelova P., Herynek V., Mitina N., Zaichenko A. The use of oligoperoxide-coated magnetic nanoparticles to label stem cells. J. Biomed. Nanotechnol. 2011, V. 7. Р. 384–394.

6. Durniev A. D. Toxicology of nanoparticles. Bull. Exp. Biol. Med. 2008, 145(1), 78–80. (In Russian).

7. Didenko M. M., Stezhka V. A. Effect of nanoparticles of  amorphous highly dispersed SiO2 on morphological structure of the rat’s inner parts. Biotechnologiia. 2009, 2(1), 80–87. (In Russian).

8. Solis D., Jimenez-Barbero J., Kaltner H., Romero A., Siebert H. C. Towards defining the role of glycans as hardware in information storage and transfer: basic principles, experimental approaches and recent progress. Cel. Tissu. Org. 2001, V. 168. Р.5–23.

9. Rudd P. M., Elliott T., Cresswell P., Wilson I., Dwek R. Glycosylation and the immune system. Science. 2001, V. 291. Р.2370–2376.

10. Van Engeland M., Nieland L. J., Ramaekers F. C., Schutte B., Reutelingsperger C. P. Annexin V-affinity аssay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998, V. 31, Р. 1–9.

11. Pan X., Lee R. J. Tumour-selective drug delivery via folate receptor-targeted liposomes. Expert Opin. Drug Deliv. 2004, V. 1, Р. 7–17.

12. Xie Y. Bagby T. R., Cohen M., Forrest M. L. Drug delivery to the lymphatic system: importance in future cancer diagnosis and therapy. Expert Opin. Drug Deliv. 2009, V. 6, Р. 785–792.

13. Ningthoujam R. S., Vatsa R. K., Kumar A., Pandey B. N. Functionalized magnetic nanoparticles: concepts, synthesis and application in cancer hyperthermia. Funct. Mat. (Elsevier). 2012, V. 6, Р. 229–260.

14. Hor?k D., Shagotova T., Mitina N., Trchova M., Boiko N., Babic M., Stoika R., Kovarova M. Surface-initiated polymerization of 2-hydroxyethyl methacrylate from heterotelechelic oligoperoxide-coated g-Fe2O3 nanoparticles and their engulfment by mammalian cells. Chem. Mat. 2011, V. 23, Р. 2637–2649.

15. Galicia J. A., Sandre O., Cousin F., Guemghar D., Menager C., Cabuil V. Designing magnetic composite materials using aqueous magnetic fluids. J. Phys. Condens. Mat. 2003, V. 15, Р. 1379–1402.

16. Khomutovsky O. A., Lutsik M. D., Perederey O. F. Electron  histochemistry of cell membrane receptors. Kyiv: Naukova dumka. 1986, Р. 25–26. (In Russian).

17. Lutsyk M. M., Yashchenko A. M. Characterization of carbohydrate determinants on the surface of murine lymphoma NK/Ly cells with the aid of native lectin binding and subsequent detection by indirect immunocytochemical method. Biologiya Tvarin. 2010, 12(1), 94–99. (In Ukrainian).

18. Lutsyk M. M., Yashchenko A. M., Kovalishin V. I., Pridatko O. E., Stoika R. S., Lutsik M. D. Heterogeneity of the population of lymphoma NK/Ly and leukemia L-1210 cells according to the carbohydrate structure of cell surfaces: immunocytochemical analysis of lectin binding. Cytology and Genetics. 2011, 45(2), 65–69.
https://doi.org/10.3103/S0095452711020071

19. Hutchens T. W., Porath J. Thiophilic adsorption of immunoglobulins — analysis of conditions optimal for selective immobilization and purification. Anal. Biochem. 1986, V. 159, Р. 217–226.

20. Geoghegan W., Ackerman A. Adsorption of horseradish peroxidase, ovomucoid and antiimmunoglobulin to colloidal gold for the indirect detection of concanavalin A, WGA and goat antihuman immunoglobulin G on cell surface at the electron-microscopic level. J. Histochem. Cytochem. 1977, V. 25, Р. 1187–1200.

21. Hacker G. W., Grimelius L., Danscher G., Bernatzky G., Muss W., Adam H., Thurner J. Silver acetate autometallography: an alternative enhancement technique for immunogold-silver staining (IGSS) and silver amplification of gold, silver, mercury and zinc in tissues. J. Histotechnol. 1988, V. 11, Р. 213–221.

22. Weakly B. Beginner’s handbook in biological electron microscopy. Moskwa: Мir. 1975, 298 р. (In Russian).

23. Paltsyn A. A., Konstantinova N. B. A method for staining of semithin sections of the brain. Bull. Exp. Biol. Med. 2009. 147(5), 598–600. (In Russian).

24. Goldstein I., Hayes C. The lectins: carbohydrate-binding proteins of plants and animals. Adv. Carbohydr. Chem. 1978, V. 35, Р. 128–340.

25. Tu C., Ng T. S., Sohi H. K., Palko H. A., House A., Jacobs R. E., Louie A. Y. Receptor-targeted iron oxide nanoparticles for molecular MR imaging of inflamed atherosclerotic plaques. Biomaterials. 2011, V. 32, Р. 7209–7016.