Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2019 № 6 CANCER DIAGNOSTICS, IMAGING AND TREATMENT BY NANOSCALE STRUCTURES TARGETING Öznur Özge ÖZCAN, Mesut KARAHAN
Print PDF

ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)

Biotechnologia Acta V. 12, No 6, 2019
https://doi.org/10.15407/biotech12.06.012
Р. 12-24, Bibliography 30, English
Universal Decimal Classification: 579.663

CANCER DIAGNOSTICS, IMAGING AND TREATMENT BY NANOSCALE STRUCTURES TARGETING

Öznur Özge ÖZCAN, Mesut KARAHAN

Üsküdar University, İstanbul, TURKEY

Recent research focused on finding new strategies in cancer therapy that did not have significant side effects and was more effective than traditional modules including the surgical intervention, radiation and chemotherapeutics. In this regard the nanoscale structures provide useful approaches for cancer treatment. So, the nanoparticle systems improve the efficiency of therapeutic drugs reducing their side effects. Although many studies reported the development of novel cancer cell therapies for future, the clinical success is lacking understand the effects of nanoparticle type, size and dose with their usage areas. Thus, this review was aimed to illustrate the usage of nanoparticles in cancer diagnostic, imaging and treatment.

Key words: cancer diagnostic, imaging and treatment, nanoparticles.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2019

  • References
    • 1. Stewart B. W., Kleihues P. World Cancer Report. World Health Organization Press. Avaible at https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2003 (accessed, Geneva, 2003).

      2. Jemal A., Siegel R., Xu J., Ward E. Cancer statistics. Cancer J. Clin. 2010, V. 60, P. 277–300. https://doi.org/10.3322/caac.20073

      3. Peer D., Karp J. M., Hong S. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, V. 2, P. 751–60. https://doi.org/10.1038/nnano.2007.387

      4. Kumari P., Ghosh B., Biswas S. Nanocarriers for cancer-targeted drug delivery. J. Drug Targeting. 2015, 24 (3), 179–191. https://doi.org/10.3109/1061186X.2015.1051049

      5. Kononenko V., Narat M., Drobne D. Nanoparticle interaction with the immune system / Interakcije nanodelcev z imunskim sistemom. Arch. Industr.l Hygiene Toxicol. 2015, 66 (2), 97–108. https://doi/org/10.1515/aiht-2015-66-2582

      6. Baetke S. C., Lammers T., Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Brit. J. Radiol. 2015, 88 (1054), 20150207. https://doi.org/10.1259/bjr.20150207

      7. Yih T, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J. Cel. Biochem. 2006, V. 97, P. 1184–1190. https://doi.org/10.1002/jcb.20796

      8. Jabir N. R., Tabrez S., Ashraf G. M. et al. Nanotechnology-based approaches in anticancer research. Int. J. Nanomedicine. 2012, V. 7, P. 4391. https://doi.org/10.2147/IJN.S33838

      9. Mallick A., More P., Ghosh S., Chippalkatti R., Chopade B. A., Lahiri M., Basu S. Dual Drug Conjugated Nanoparticle for Simultaneous Targeting of Mitochondria and Nucleus in Cancer Cells. ACS Applied Materials & Interfaces. 2015, 7 (14), 7584–7598. https://doi.org/10.1021/am5090226

      10. Stammati A. P., Silano V., Zucco F. Toxicology investigations with cell culture systems. Toxicology. 1981, V. 20, P. 91–153. ttps://doi.org/10.1016/0300-483X(81)90046-9

      11. Borm P., Klaessig F. C., Landry T. D., Moudgil B., Pauluhn J. et al. Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 2006, V. 90, P. 23–32. https://doi.org/10.1093/toxsci/kfj084

      12. Costa E. C., Gaspar V. M., Marques J. G., Coutinho P., Correia I. J. Evaluation of Nanoparticle Uptake in Co-culture Cancer Models. PLoS ONE. 2013, 8 (7), e70072. https://doi.org/10.1371/journal.pone.0070072

      13. Zhang X.-F., Liu Z.-G., Shen W., Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Inter. J. Mol. Sci. 2016, 17 (9), 1534. ttps://doi.org/10.3390/ijms17091534

      14. AshaRani P. V, Mun G. L. K., Hande M. P., Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009, V. 3, P. 279–290.https://doi.org/10.1021/nn800596w

      15. Foldbjerg R., Irving E. S., Hayashi Y., Sutherland D. S., Thorsen K., Autrup H., Beer C. Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol. Sci. 2012, V. 130, P. 145–157. https://doi.org/10.1093/toxsci/kfs225

      16. Lin J., Huang Z., Wu H., Zhou W., Jin P., Wei P., Zhang Y., Zheng F., Zhang J., Xu J. et al. Inhibitio of 
autophagy enhances the anticancer activity of silver nanoparticles. Autophagy. 2014, V. 10, P. 2006–2020. https://doi.org/10.4161/auto.36293

      17. Kovács D., Szőke K., Igaz N., Spengler G., Molnár J., Tóth T., Kiricsi M. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomed. Nanotechnol., Biol. Med. 2016, 12 (3), 601–610. https://doi.org/10.1016/j.envpol.2019.113880

      18. Sokolov K., Follen M., Aaron J. et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003, 63 (9), 1999–2004. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773158

      19. Kah J. C., Wong K. Y., Neoh K. G., Song J. H., Fu J. W., Mhaisalkar S. et al. Critical parameters in the pegylation of gold nanoshells for biomedical applications: An in vitro macrophage study. J. Drug Target. 2009, V. 17, P. 181–193. https://doi.org/10.1080/10611860802582442

      20. Svarovsky S. A., Szekely Z., Barchi J. J. Synthesis of gold nanoparticles bearing the thomsen–friedenreich disaccharide: A new multivalent presentation of an important tumor antigen. Tetrahedron Asymmetry. 2005, V. 16, P. 587–598. https://doi.org/10.1016/j.tetasy.2004.12.003

      21. Ojeda R., de Paz J. L., Barrientos A. G., Martin-Lomas M., Penades S. Preparation of multifunctional glyconanoparticles as a platform for potential carbohydrate-based anticancer vaccines. Carbohydrate Res. 2007, V. 342, P. 448–459. https://doi.org/10.1016/j.carres.2006.11.018

      22. Mkandawire M. M., Lakatos M., Springer A., Clemens A., Appelhans D., Krause-Buchholz U., Mkandawire M. Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles. Nanoscale. 2015, 7 (24), 10634–10640. https://doi.org/10.1039/C5NR01483B

      23. Lee C.-S., Kim H., Yu J., Yu S. H., Ban S., Oh S., Kim T. H. Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: A promising in vivo drug delivery system for colorectal cancer therapy. Europ. J. Med. Chem. 2017, V. 142, P. 416–423. https://doi.org/10.1016/j.ejmech.2017.08.063

      24. Chang Y., Yan W., He X., Zhang L., Li C., Huang H. et al. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterol. 2012, V. 143, P. 177–187 e8. https://doi.org/10.1053/j.gastro.2012.04.009

      25. Dawidczyk C. M., Russell L. M., Searson P. C. Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments. Frontiers in Chemistry. 2014, V. 2. https://doi.org/10.3389/fchem.2014.00069

      26. Devulapally R., Sekar N. M., Sekar T. V., Foygel K., Massoud T. F., Willmann J. K., Paulmurugan R. Polymer Nanoparticles Mediated Codelivery of AntimiR-10b and AntimiR-21 for Achieving Triple Negative Breast Cancer Therapy. ACS Nano. 2015, 9 (3), 2290–2302. https://doi.org/10.1021/nn507465d

      27. Fernandez-Fernandez A., Manchanda R., McGoron A. J. Theranostic Applications of Nanomaterials in Cancer: Drug Delivery, Image-Guided Therapy, and Multifunctional Platforms. Appl. Biochem. Biotechnol. 2011, V. 165, P. 1628–1651. https://doi.org/10.1007/s12010-011-9383-z

      28. Lu J. M., Wang X., Marin-Muller C., Wang H., Lin P. H., Yao Q., Chen C. Current Advances in Research and Clinical Applications of PLGA-Based Nanotechnology. Expert Rev. Mol. Diagn. 2009, V. 9, P. 325–341. https://doi.org/10.1586/erm.09.15

      29. Mundargi R. C., Babu V. R., Rangaswamy V., Patel P., Aminabhavi T. M. Nano/Micro Technologies for Delivering Macromolecular Therapeutics Using Poly(D,LLactide-Co-Glycolide) and Its Derivatives. J. Control. Release. 2008, V. 125, P. 193–209. https://doi.org/10.1016/j.jconrel.2007.09.013

      30. Mattos-Arruda L., Giulia Bottai, Paolo G. Nuciforo, Luca Di Tommaso, Elisa Giovannetti, Vicente Peg, Agnese Losurdo, José Pérez-Garcia, Giovanna Masci, Fabio Corsi, Javier Cortés, Joan Seoane, George A. Calin, Libero Santarpia. MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget. 2015, V. 6, P. 37269–37280. https://doi.org/10.18632/oncotarget.5495

      31. Malhotra M., Thillai Veerapazham Sekar, Jeyarama S. Ananta, Rammohan Devulapally, Rayhaneh Afjei, Husam A. Babikir, Ramasamy Paulmurugan, Tarik F. Massoud. Targeted nanoparticle delivery of therapeutic antisense microRNAs presensitizes glioblastoma cells to lower effective doses of temozolomide in vitro and in a mouse model. Oncotarget. 2018, V. 9, P. 21478–21494. https://doi.org/10.18632/oncotarget.25135

      32. Mohammadian F., Pilehvar-Soltanahmadi Y., Mofarrah M., Dastani-Habashi M., Zarghami N. Down regulation of miR-18a, miR-21 and miR-221 genes in gastric cancer cell line by chrysin-loaded PLGA-PEG nanoparticles. Artif. Cel., Nanomed., Biotechnol. 2016, 44 (8), 1972–1978. https://doi.org/10.3109/21691401.2015.1129615

      33. Müller V., Gade S., Steinbach B., Loibl S., von Minckwitz G., Untch M., Schwarzenbach H. Changes in serum levels of miR-21, miR-210, and miR-373 in HER2-positive breast cancer patients undergoing neoadjuvant therapy: a translational research project within the Geparquinto trial. Breast Cancer Research and Treatment. 2014, 147 (1), 61–68. https://doi.org/10.1007/s10549-014-3079-3

      34. Harris J. M., Chess R. B. Effect of Pegylation on Pharmaceuticals. Nat. Rev. Drug Discov. 2003, V. 2, P. 214–221. https://doi.org/10.1038/nrd1033

      35. Mintzer M. A. Simanek E. E. Non Viral Vectors for Gene Delivery. Chem. Rev. 2009, V. 109, P. 259−302. https://doi.org/10.4103/2277-9175.98152

      36. Yin H., Kanasty R. L., Eltoukhy A. A., Vegas A. J., Dorkin J. R., Anderson D. G. Non Viral Vectors for Gene-based Therapy Nat. Rev. Genet. 2014, V. 15, P. 541−555. https://doi.org/10.1038/nrg3763

      37. Pietersz G. A., Tang C. K., Apostolopoulos V. Mini Rev. Med. Chem. 2006, V. 6, P. 1285−1298. https://doi.org/10.2174/138955706778992987

      38. Hu Q., Wu M., Fang C., Cheng C., Zhao M., Fang W., Tang G. Engineering Nanoparticle-Coated Bacteria as Oral DNA Vaccines for Cancer Immunotherapy. Nano Letters. 2015, 15 (4), 2732–2739.https://doi.org/10.1021/acs.nanolett.5b00570

      39. Schleich N., Sibret P., Danhier P., Ucakar B., Laurent S., Muller R. N., Danhier F. Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapyand magnetic resonance imaging. Inter. J. Pharmac. 2013, 447 (1–2), 94–101. https://doi.org/10.1016/j.ijpharm.2013.02.042

      40. Zuo H. D., Yao W. W., Chen T. W., Zhu J., Zhang J. J., Pu Y., Zhang X. M. The Effect of Superparamagnetic Iron Oxide with iRGD Peptide on the Labeling of Pancreatic Cancer CellsIn Vitro: A Preliminary Study. BioMed Res. Inter. 2014, P. 1–8. https://doi.org/10.1155/2014/852352

      41. Huh Y. M., Jun Y. W., Song H. T., Kim S., Choi J. S., Lee J. H. et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 2005, 127 (35), 12387–12391. https://doi.org/10.1021/ja052337c

      42. Oghabian M. A., Jeddi-Tehrani M., Zolfaghari A., Shamsipour F., Khoei S., Amanpour S. Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI. J. Nanosci. Nanotechnol. 2011, 11 (6), 5340–5344. https://doi.org/10.1166/jnn.2011.3775

      43. Marchesan S., Kostarelos K., Bianco A., Prato M. The winding road for carbon nanotubes in nanomedicine. Mater. Today. 2015, V. 18, P. 12–19. https://doi.org/10.1016/j.mattod.2014.07.009

      44. Lacerda L., Bianco A., Prato M., Kostarelos K. Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug Deliv. Rev. 2006, V. 58, P. 1460–1470. https://doi.org/10.1016/j.addr.2006.09.015

      45. Siu K. S., Chen D., Zheng X., Zhang X., Johnston N., Liu Y., Yuan K., Koropatnick J., Gillies E. R., Min W. P. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials. 2014, V. 35, P. 3435–3442. https://doi.org/10.1016/j.biomaterials.2013.12.079

      46. Sanginario A., Miccoli B., Demarchi D. Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. Biosensors. 2017, 7 (4), 9. https://doi.org/10.3390/bios7010009

      47. Zununi Vahed S., Salehi R., Davaran S., Sharifi S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Engin.: C. 2017, V. 71, P. 1327–1341. https://doi.org/10.1016/j.msec.2016.11.073

      48. Eloy J. O., Petrilli R., Topan J. F., Antonio H. M., Barcellos J. P., Chesca D. L., Serafini L. N., Tiezzi D. G., Lee R. J., Marchetti J. M. Co-loaded paclitaxel/rapamycin liposomes: development, characterization and in vitro and in vivo evaluation for breast cancer therapy, Colloids Surf. B. Biointerfaces. 2016, V. 141, P. 74–82. https://doi.org/10.1016/j.colsurfb.2016.01.032

      49. Elnakat H., Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv. Drug Deliv. Rev. 2004, V. 56, P. 1067–1084. https://doi.org/10.1016/j.addr.2004.01.001

      50. Chaudhury A., Das S. Folate receptor targeted liposomes encapsulating anti-cancer drugs, Curr. Pharm. Biotechnol. 2015, V. 16, P. 333–343. https://doi.org/10.2174/1389201016666150118135107

      51. Wu D., Zheng Y., Hu X., Fan Z., Jing X. Anti-tumor activity of folate targeted biodegradable polymer-paclitaxel conjugate micelles on EMT-6 breast cancer model. Mater. Sci. Eng. C. 2015, V. 53, P. 68–75. https://doi.org/10.1016/j.msec.2015.04.012

      52. Yang T., Li B., Qi S., Liu Y., Gai Y., Ye P., Yang G., Zhang W., Zhang P., He X., Li W., Zhang Z., Xiang G., Xu C. Co-delivery of doxorubicin and Bmi1 siRNA by folate receptor targeted liposomes exhibits enhanced anti-tumor effects in vitro and in vivo. Theranostics. 2014, V. 4, P. 1096–1111. https://doi.org/10.7150/thno.9423

      53. Peng Z., Wang C., Fang E., Lu X., Wang G., Tong Q. Co-delivery of doxorubicin and SATB1 shRNA by thermosensitive magnetic cationic liposomes for gastric cancer therapy. PLoS One. 2014, V. 9, P. e92924. https://doi.org/10.1371/journal.pone.0092924

      54. Connelly C. M., Uprety R., Hemphill J., Deiters A. Spatiotemporal control of microRNA function using light-activated antagomirs, Mol. BioSyst. 2012, V. 8, P. 2987–2993. https://doi.org/10.1039/c2mb25175b

      55. Riaz M., Riaz M., Zhang X., Lin C., Wong K., Chen X. Yang Z. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review. Inter. J. Mol. Sci. 2018, 19 (1), 195. https://doi.org/10.3390/ijms19010195

      56. Biswas S., Kumari P., Lakhani P. M., Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Europ. J. Pharmac. Sc. 2016, V. 83, P. 184–202. https://doi.org/10.1016/j.ejps.2015.12.031

      57. Lohcharoenkal W., Wang L., Chen Y. C., Rojanasakul Y. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy. BioMed Res. Inter. 2014, P. 1–12. https://doi.org/10.1155/2014/180549

      58. Weber C., Coester C., Kreuter J., Langer. K. Desolvation process and surface characterisation of protein nanoparticles. Inter. J. Pharmac. 2000, 194 (1), 91–102. https://doi.org/10.1016/S0378-5173(99)00370-1

      59. Teng Z., Luo Y., Wang T., Zhang B., Wang Q. Development and application of nanoparticles synthesized with folic acid conjugated soy protein. J. Agricult. Food Chemy. 2013, V. 61, P. 2556–2564. https://doi.org/10.1021/jf4001567

      60. Gulfam M., Kim J., Lee J. M., Ku B., Chung B. H., Chung B. G. Anticancer drug-loaded gliadin nanoparticles induced apoptosis in breast cancer cells. Langmuir. 2012, V. 28, P. 8216– 8223. hhttps://doi.org/10.1021/la300691n

      61. Elzoghby A. O., Saad N. I., Helmy M. W., Samy W. M., Elgindy N. A. Ionically-crosslinked milk protein nanoparticles as flutamide carriers for effective anticancer activity in prostate cancer-bearing rats. Europ. J. Pharmac. Biopharmac. 2013, 85 (3), part A, 444–451. https://doi.org/10.1016/j.ejpb.2013.07.003

      62. Bazak R., Houri M., El Achy S., Kamel S., Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J. Cancer Res. Clin. Oncol. 2014, 141 (5), 769–784. https://doi.org/10.1007/s00432-014-1767-3

      63. Eigenbrot C., Ultsch M., Dubnovitsky A., Abrahmsen L., Hard T. Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc. Nat. Acad. Sci.USA. 2010, 107 (34), 15039–15044. hhttps://doi.org/10.1073/pnas.1005025107

      64. Zhang J. M., Zhao X. M., Wang S. J., Ren X. C., Wang N., Han J.-Y., Jia L. Z. Evaluation of 99mTc peptide ZHER2: 342Affibody®molecule forin vivomolecular imaging. The Brit. J. Radiol. 2014, 87 (1033), 20130484. ttps://doi.org/10.1259/bjr.20130484

      65. Ghanemi M., Pourshohod A., Ghaffari M. A., Kheirollah A., Amin M., Zeinali M., Jamalan M. Specific Targeting of HER2-Positive Head and Neck Squamous Cell Carcinoma Line HN5 by Idarubicin ZHER2 Affibody Conjugate. Curr. Cancer Drug Targets. 2019, 19 (1), 65–73. https://doi.org/10.2174/1568009617666170427105417

      66. Glazer E. S., Massey K. L., Zhu C., Curley S. A. Pancreatic carcinoma cells are susceptible to noninvasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery. 2010, 148 (2), 319–324. https://doi.org/10.1016/j.surg.2010.04.025

      67. Talekar M., Kendall J., Denny W., Garg S. Targeting of nano- particles in cancer: drug delivery and diagnostics. Anticancer Drugs. 2011, 22 (10), 949–962. https://doi.org/10.1097/CAD.0b013e32834a4554

      68. Wang Z., Gu F., Zhang L., Chan J. M., Radovic-Moreno A., Shaikh M. R. et al. Biofunctionalized targeted nanoparticles for thera- peutic applications. Expert Opin. Biol. Ther. 2008, 8 (8), 1063–1070. https://doi.org/10.1517/14712598.8.8.1063

      69. Lebel M.-È., Chartrand K., Tarrab E., Savard P., Leclerc D., Lamarre A. Potentiating Cancer Immunotherapy Using Papaya Mosaic Virus-Derived Nanoparticles. Nano Letters. 2016, 16 (3), 1826–1832. https://doi.org/10.1021/acs.nanolett.5b04877

      70. Jinu U., Gomathi M., Saiqa I., Geetha N., Benelli G., Venkatachalam P. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microbial Pathogenesis. 2017, V. 105, P. 86–95. https://doi.org/10.1016/j.micpath.2017.02.019

      71. Joshi M. D., Patravale V., Prabhu R. Polymeric nanoparticles for targeted treatment in oncology: current insights. Inter. J. Nanomed. 2015, P. 1001. https://doi.org/10.2147/IJN.S56932

      72. Torchilin V. Tumor delivery of macromolecular drugs based on EPR effect. Adv. Drug Delivery Rev. 2011, V. 63, P. 131–135. https://doi.org/10.1016/j.addr.2010.03.011

      73. Greish K. In Cancer Nanotechnology: Methods and Protocols. Ed. R. S. Grobmyer and M. B. Moudgil. Humana Press, Totowa, NJ. 2010, 25–37.

      74. Maeda H. Nakamura, Fang J. The EPR effect for macromolecular delivery to solid tumors: improvement of tumor uptake lowering of systemic toxicity and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, V. 65, P. 71–79. https://doi.org/10.1016/j.addr.2012.10.002

      75. Sun C., Lee J. S., Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 2008, V. 60, P. 1252–1265. https://doi.org/10.1016/j.addr.2008.03.018

      76. Aires A., Ocampo S. M., Simoes B. M. et al. Multifunctionalized iron 
oxide nanoparticles for selective drug delivery to CD44-positive 
cancer cells. Nanotechnol. 2016, V. 27, P. 065103. https://doi.org/10.1088/0957-4484/27/6/065103

      77. Marciello M., Pellico J., Fernandez-Barahona I., Herranz F., Ruiz-Cabello J., Filice M. Recent advances in the preparation and application of multifunctional iron oxide and liposome-based nanosystems for multimodal diagnosis and therapy. Interface Focus. 2016, 6 (6), 20160055. https://doi.org/10.1098/rsfs.2016.0055

      78. Guo J., Rahme K., He Y., Li L.-L., Holmes J., O’Driscoll C. Gold nanoparticles enlighten the future of cancer theranostics. Inter. J. Nanomed. 2017, V. 12, P. 6131–6152. https://doi.org/10.2147/IJN.S140772

      79. Jin Y. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release. Acc. Chem. Res. 2014, 47 (1), 138–148. https://doi.org/10.1021/ar400086e

      80. Zhao Y., Pang B., Luehmann H. et al. Gold nanoparticles doped with (199) Au atoms and their use for targeted cancer imaging by SPECT. Adv. Healthc. Mater. 2016, 5 (8), 928–935. https://doi.org/10.1002/adhm.201500992

      81. Liu J., Zhang L., Lei J., Ju H. MicroRNA-Responsive Cancer Cell Imaging and Therapy with Functionalized Gold Nanoprobe. ACS Appl. Mater. Interfaces. 2015, 7 (34), 19016–19023. https://doi.org/10.1021/acsami.5b06206

      82. Li K., Nejadnik H., Daldrup-Link H. E. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discov. Today. 2017, 22 (9), 1421–1429. https://doi.org/10.1016/j.drudis.2017.04.008

      83. Daldrup-Link H. E. et al. Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors. JCI Insight. 2016, V. 1, P. e85608. https://doi.org/10.1172/jci.insight.85608

      84. Zaimy M. A., Saffarzadeh N., Mohammadi A., Pourghadamyari H., Izadi P., Sarli A., Tavakkoly-Bazzaz J. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 2017, 24 (6), 233–243. https://doi.org/10.1038/cgt.2017.16