Biotechnologia Acta


  • Increase font size
  • Default font size
  • Decrease font size
Print PDF

ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)

Biotechnologia Acta V. 12, No 6, 2019
Р. 12-24, Bibliography 30, English
Universal Decimal Classification: 579.663


Öznur Özge ÖZCAN, Mesut KARAHAN

Üsküdar University, İstanbul, TURKEY

Recent research focused on finding new strategies in cancer therapy that did not have significant side effects and was more effective than traditional modules including the surgical intervention, radiation and chemotherapeutics. In this regard the nanoscale structures provide useful approaches for cancer treatment. So, the nanoparticle systems improve the efficiency of therapeutic drugs reducing their side effects. Although many studies reported the development of novel cancer cell therapies for future, the clinical success is lacking understand the effects of nanoparticle type, size and dose with their usage areas. Thus, this review was aimed to illustrate the usage of nanoparticles in cancer diagnostic, imaging and treatment.

Key words: cancer diagnostic, imaging and treatment, nanoparticles.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2019

  • References
    • 1. Stewart B. W., Kleihues P. World Cancer Report. World Health Organization Press. Avaible at (accessed, Geneva, 2003).

      2. Jemal A., Siegel R., Xu J., Ward E. Cancer statistics. Cancer J. Clin. 2010, V. 60, P. 277–300.

      3. Peer D., Karp J. M., Hong S. et al. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, V. 2, P. 751–60.

      4. Kumari P., Ghosh B., Biswas S. Nanocarriers for cancer-targeted drug delivery. J. Drug Targeting. 2015, 24 (3), 179–191.

      5. Kononenko V., Narat M., Drobne D. Nanoparticle interaction with the immune system / Interakcije nanodelcev z imunskim sistemom. Arch. Industr.l Hygiene Toxicol. 2015, 66 (2), 97–108. https://doi/org/10.1515/aiht-2015-66-2582

      6. Baetke S. C., Lammers T., Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Brit. J. Radiol. 2015, 88 (1054), 20150207.

      7. Yih T, Al-Fandi M. Engineered nanoparticles as precise drug delivery systems. J. Cel. Biochem. 2006, V. 97, P. 1184–1190.

      8. Jabir N. R., Tabrez S., Ashraf G. M. et al. Nanotechnology-based approaches in anticancer research. Int. J. Nanomedicine. 2012, V. 7, P. 4391.

      9. Mallick A., More P., Ghosh S., Chippalkatti R., Chopade B. A., Lahiri M., Basu S. Dual Drug Conjugated Nanoparticle for Simultaneous Targeting of Mitochondria and Nucleus in Cancer Cells. ACS Applied Materials & Interfaces. 2015, 7 (14), 7584–7598.

      10. Stammati A. P., Silano V., Zucco F. Toxicology investigations with cell culture systems. Toxicology. 1981, V. 20, P. 91–153. ttps://

      11. Borm P., Klaessig F. C., Landry T. D., Moudgil B., Pauluhn J. et al. Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 2006, V. 90, P. 23–32.

      12. Costa E. C., Gaspar V. M., Marques J. G., Coutinho P., Correia I. J. Evaluation of Nanoparticle Uptake in Co-culture Cancer Models. PLoS ONE. 2013, 8 (7), e70072.

      13. Zhang X.-F., Liu Z.-G., Shen W., Gurunathan S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Inter. J. Mol. Sci. 2016, 17 (9), 1534. ttps://

      14. AshaRani P. V, Mun G. L. K., Hande M. P., Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009, V. 3, P. 279–290.

      15. Foldbjerg R., Irving E. S., Hayashi Y., Sutherland D. S., Thorsen K., Autrup H., Beer C. Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol. Sci. 2012, V. 130, P. 145–157.

      16. Lin J., Huang Z., Wu H., Zhou W., Jin P., Wei P., Zhang Y., Zheng F., Zhang J., Xu J. et al. Inhibitio of 
autophagy enhances the anticancer activity of silver nanoparticles. Autophagy. 2014, V. 10, P. 2006–2020.

      17. Kovács D., Szőke K., Igaz N., Spengler G., Molnár J., Tóth T., Kiricsi M. Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomed. Nanotechnol., Biol. Med. 2016, 12 (3), 601–610.

      18. Sokolov K., Follen M., Aaron J. et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003, 63 (9), 1999–2004.

      19. Kah J. C., Wong K. Y., Neoh K. G., Song J. H., Fu J. W., Mhaisalkar S. et al. Critical parameters in the pegylation of gold nanoshells for biomedical applications: An in vitro macrophage study. J. Drug Target. 2009, V. 17, P. 181–193.

      20. Svarovsky S. A., Szekely Z., Barchi J. J. Synthesis of gold nanoparticles bearing the thomsen–friedenreich disaccharide: A new multivalent presentation of an important tumor antigen. Tetrahedron Asymmetry. 2005, V. 16, P. 587–598.

      21. Ojeda R., de Paz J. L., Barrientos A. G., Martin-Lomas M., Penades S. Preparation of multifunctional glyconanoparticles as a platform for potential carbohydrate-based anticancer vaccines. Carbohydrate Res. 2007, V. 342, P. 448–459.

      22. Mkandawire M. M., Lakatos M., Springer A., Clemens A., Appelhans D., Krause-Buchholz U., Mkandawire M. Induction of apoptosis in human cancer cells by targeting mitochondria with gold nanoparticles. Nanoscale. 2015, 7 (24), 10634–10640.

      23. Lee C.-S., Kim H., Yu J., Yu S. H., Ban S., Oh S., Kim T. H. Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: A promising in vivo drug delivery system for colorectal cancer therapy. Europ. J. Med. Chem. 2017, V. 142, P. 416–423.

      24. Chang Y., Yan W., He X., Zhang L., Li C., Huang H. et al. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterol. 2012, V. 143, P. 177–187 e8.

      25. Dawidczyk C. M., Russell L. M., Searson P. C. Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments. Frontiers in Chemistry. 2014, V. 2.

      26. Devulapally R., Sekar N. M., Sekar T. V., Foygel K., Massoud T. F., Willmann J. K., Paulmurugan R. Polymer Nanoparticles Mediated Codelivery of AntimiR-10b and AntimiR-21 for Achieving Triple Negative Breast Cancer Therapy. ACS Nano. 2015, 9 (3), 2290–2302.

      27. Fernandez-Fernandez A., Manchanda R., McGoron A. J. Theranostic Applications of Nanomaterials in Cancer: Drug Delivery, Image-Guided Therapy, and Multifunctional Platforms. Appl. Biochem. Biotechnol. 2011, V. 165, P. 1628–1651.

      28. Lu J. M., Wang X., Marin-Muller C., Wang H., Lin P. H., Yao Q., Chen C. Current Advances in Research and Clinical Applications of PLGA-Based Nanotechnology. Expert Rev. Mol. Diagn. 2009, V. 9, P. 325–341.

      29. Mundargi R. C., Babu V. R., Rangaswamy V., Patel P., Aminabhavi T. M. Nano/Micro Technologies for Delivering Macromolecular Therapeutics Using Poly(D,LLactide-Co-Glycolide) and Its Derivatives. J. Control. Release. 2008, V. 125, P. 193–209.

      30. Mattos-Arruda L., Giulia Bottai, Paolo G. Nuciforo, Luca Di Tommaso, Elisa Giovannetti, Vicente Peg, Agnese Losurdo, José Pérez-Garcia, Giovanna Masci, Fabio Corsi, Javier Cortés, Joan Seoane, George A. Calin, Libero Santarpia. MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget. 2015, V. 6, P. 37269–37280.

      31. Malhotra M., Thillai Veerapazham Sekar, Jeyarama S. Ananta, Rammohan Devulapally, Rayhaneh Afjei, Husam A. Babikir, Ramasamy Paulmurugan, Tarik F. Massoud. Targeted nanoparticle delivery of therapeutic antisense microRNAs presensitizes glioblastoma cells to lower effective doses of temozolomide in vitro and in a mouse model. Oncotarget. 2018, V. 9, P. 21478–21494.

      32. Mohammadian F., Pilehvar-Soltanahmadi Y., Mofarrah M., Dastani-Habashi M., Zarghami N. Down regulation of miR-18a, miR-21 and miR-221 genes in gastric cancer cell line by chrysin-loaded PLGA-PEG nanoparticles. Artif. Cel., Nanomed., Biotechnol. 2016, 44 (8), 1972–1978.

      33. Müller V., Gade S., Steinbach B., Loibl S., von Minckwitz G., Untch M., Schwarzenbach H. Changes in serum levels of miR-21, miR-210, and miR-373 in HER2-positive breast cancer patients undergoing neoadjuvant therapy: a translational research project within the Geparquinto trial. Breast Cancer Research and Treatment. 2014, 147 (1), 61–68.

      34. Harris J. M., Chess R. B. Effect of Pegylation on Pharmaceuticals. Nat. Rev. Drug Discov. 2003, V. 2, P. 214–221.

      35. Mintzer M. A. Simanek E. E. Non Viral Vectors for Gene Delivery. Chem. Rev. 2009, V. 109, P. 259−302.

      36. Yin H., Kanasty R. L., Eltoukhy A. A., Vegas A. J., Dorkin J. R., Anderson D. G. Non Viral Vectors for Gene-based Therapy Nat. Rev. Genet. 2014, V. 15, P. 541−555.

      37. Pietersz G. A., Tang C. K., Apostolopoulos V. Mini Rev. Med. Chem. 2006, V. 6, P. 1285−1298.

      38. Hu Q., Wu M., Fang C., Cheng C., Zhao M., Fang W., Tang G. Engineering Nanoparticle-Coated Bacteria as Oral DNA Vaccines for Cancer Immunotherapy. Nano Letters. 2015, 15 (4), 2732–2739.

      39. Schleich N., Sibret P., Danhier P., Ucakar B., Laurent S., Muller R. N., Danhier F. Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapyand magnetic resonance imaging. Inter. J. Pharmac. 2013, 447 (1–2), 94–101.

      40. Zuo H. D., Yao W. W., Chen T. W., Zhu J., Zhang J. J., Pu Y., Zhang X. M. The Effect of Superparamagnetic Iron Oxide with iRGD Peptide on the Labeling of Pancreatic Cancer CellsIn Vitro: A Preliminary Study. BioMed Res. Inter. 2014, P. 1–8.

      41. Huh Y. M., Jun Y. W., Song H. T., Kim S., Choi J. S., Lee J. H. et al. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 2005, 127 (35), 12387–12391.

      42. Oghabian M. A., Jeddi-Tehrani M., Zolfaghari A., Shamsipour F., Khoei S., Amanpour S. Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI. J. Nanosci. Nanotechnol. 2011, 11 (6), 5340–5344.

      43. Marchesan S., Kostarelos K., Bianco A., Prato M. The winding road for carbon nanotubes in nanomedicine. Mater. Today. 2015, V. 18, P. 12–19.

      44. Lacerda L., Bianco A., Prato M., Kostarelos K. Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv. Drug Deliv. Rev. 2006, V. 58, P. 1460–1470.

      45. Siu K. S., Chen D., Zheng X., Zhang X., Johnston N., Liu Y., Yuan K., Koropatnick J., Gillies E. R., Min W. P. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials. 2014, V. 35, P. 3435–3442.

      46. Sanginario A., Miccoli B., Demarchi D. Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. Biosensors. 2017, 7 (4), 9.

      47. Zununi Vahed S., Salehi R., Davaran S., Sharifi S. Liposome-based drug co-delivery systems in cancer cells. Mater. Sci. Engin.: C. 2017, V. 71, P. 1327–1341.

      48. Eloy J. O., Petrilli R., Topan J. F., Antonio H. M., Barcellos J. P., Chesca D. L., Serafini L. N., Tiezzi D. G., Lee R. J., Marchetti J. M. Co-loaded paclitaxel/rapamycin liposomes: development, characterization and in vitro and in vivo evaluation for breast cancer therapy, Colloids Surf. B. Biointerfaces. 2016, V. 141, P. 74–82.

      49. Elnakat H., Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv. Drug Deliv. Rev. 2004, V. 56, P. 1067–1084.

      50. Chaudhury A., Das S. Folate receptor targeted liposomes encapsulating anti-cancer drugs, Curr. Pharm. Biotechnol. 2015, V. 16, P. 333–343.

      51. Wu D., Zheng Y., Hu X., Fan Z., Jing X. Anti-tumor activity of folate targeted biodegradable polymer-paclitaxel conjugate micelles on EMT-6 breast cancer model. Mater. Sci. Eng. C. 2015, V. 53, P. 68–75.

      52. Yang T., Li B., Qi S., Liu Y., Gai Y., Ye P., Yang G., Zhang W., Zhang P., He X., Li W., Zhang Z., Xiang G., Xu C. Co-delivery of doxorubicin and Bmi1 siRNA by folate receptor targeted liposomes exhibits enhanced anti-tumor effects in vitro and in vivo. Theranostics. 2014, V. 4, P. 1096–1111.

      53. Peng Z., Wang C., Fang E., Lu X., Wang G., Tong Q. Co-delivery of doxorubicin and SATB1 shRNA by thermosensitive magnetic cationic liposomes for gastric cancer therapy. PLoS One. 2014, V. 9, P. e92924.

      54. Connelly C. M., Uprety R., Hemphill J., Deiters A. Spatiotemporal control of microRNA function using light-activated antagomirs, Mol. BioSyst. 2012, V. 8, P. 2987–2993.

      55. Riaz M., Riaz M., Zhang X., Lin C., Wong K., Chen X. Yang Z. Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review. Inter. J. Mol. Sci. 2018, 19 (1), 195.

      56. Biswas S., Kumari P., Lakhani P. M., Ghosh B. Recent advances in polymeric micelles for anti-cancer drug delivery. Europ. J. Pharmac. Sc. 2016, V. 83, P. 184–202.

      57. Lohcharoenkal W., Wang L., Chen Y. C., Rojanasakul Y. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy. BioMed Res. Inter. 2014, P. 1–12.

      58. Weber C., Coester C., Kreuter J., Langer. K. Desolvation process and surface characterisation of protein nanoparticles. Inter. J. Pharmac. 2000, 194 (1), 91–102.

      59. Teng Z., Luo Y., Wang T., Zhang B., Wang Q. Development and application of nanoparticles synthesized with folic acid conjugated soy protein. J. Agricult. Food Chemy. 2013, V. 61, P. 2556–2564.

      60. Gulfam M., Kim J., Lee J. M., Ku B., Chung B. H., Chung B. G. Anticancer drug-loaded gliadin nanoparticles induced apoptosis in breast cancer cells. Langmuir. 2012, V. 28, P. 8216– 8223. h

      61. Elzoghby A. O., Saad N. I., Helmy M. W., Samy W. M., Elgindy N. A. Ionically-crosslinked milk protein nanoparticles as flutamide carriers for effective anticancer activity in prostate cancer-bearing rats. Europ. J. Pharmac. Biopharmac. 2013, 85 (3), part A, 444–451.

      62. Bazak R., Houri M., El Achy S., Kamel S., Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J. Cancer Res. Clin. Oncol. 2014, 141 (5), 769–784.

      63. Eigenbrot C., Ultsch M., Dubnovitsky A., Abrahmsen L., Hard T. Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc. Nat. Acad. Sci.USA. 2010, 107 (34), 15039–15044. h

      64. Zhang J. M., Zhao X. M., Wang S. J., Ren X. C., Wang N., Han J.-Y., Jia L. Z. Evaluation of 99mTc peptide ZHER2: 342Affibody®molecule forin vivomolecular imaging. The Brit. J. Radiol. 2014, 87 (1033), 20130484. ttps://

      65. Ghanemi M., Pourshohod A., Ghaffari M. A., Kheirollah A., Amin M., Zeinali M., Jamalan M. Specific Targeting of HER2-Positive Head and Neck Squamous Cell Carcinoma Line HN5 by Idarubicin ZHER2 Affibody Conjugate. Curr. Cancer Drug Targets. 2019, 19 (1), 65–73.

      66. Glazer E. S., Massey K. L., Zhu C., Curley S. A. Pancreatic carcinoma cells are susceptible to noninvasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery. 2010, 148 (2), 319–324.

      67. Talekar M., Kendall J., Denny W., Garg S. Targeting of nano- particles in cancer: drug delivery and diagnostics. Anticancer Drugs. 2011, 22 (10), 949–962.

      68. Wang Z., Gu F., Zhang L., Chan J. M., Radovic-Moreno A., Shaikh M. R. et al. Biofunctionalized targeted nanoparticles for thera- peutic applications. Expert Opin. Biol. Ther. 2008, 8 (8), 1063–1070.

      69. Lebel M.-È., Chartrand K., Tarrab E., Savard P., Leclerc D., Lamarre A. Potentiating Cancer Immunotherapy Using Papaya Mosaic Virus-Derived Nanoparticles. Nano Letters. 2016, 16 (3), 1826–1832.

      70. Jinu U., Gomathi M., Saiqa I., Geetha N., Benelli G., Venkatachalam P. Green engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: Enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microbial Pathogenesis. 2017, V. 105, P. 86–95.

      71. Joshi M. D., Patravale V., Prabhu R. Polymeric nanoparticles for targeted treatment in oncology: current insights. Inter. J. Nanomed. 2015, P. 1001.

      72. Torchilin V. Tumor delivery of macromolecular drugs based on EPR effect. Adv. Drug Delivery Rev. 2011, V. 63, P. 131–135.

      73. Greish K. In Cancer Nanotechnology: Methods and Protocols. Ed. R. S. Grobmyer and M. B. Moudgil. Humana Press, Totowa, NJ. 2010, 25–37.

      74. Maeda H. Nakamura, Fang J. The EPR effect for macromolecular delivery to solid tumors: improvement of tumor uptake lowering of systemic toxicity and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, V. 65, P. 71–79.

      75. Sun C., Lee J. S., Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 2008, V. 60, P. 1252–1265.

      76. Aires A., Ocampo S. M., Simoes B. M. et al. Multifunctionalized iron 
oxide nanoparticles for selective drug delivery to CD44-positive 
cancer cells. Nanotechnol. 2016, V. 27, P. 065103.

      77. Marciello M., Pellico J., Fernandez-Barahona I., Herranz F., Ruiz-Cabello J., Filice M. Recent advances in the preparation and application of multifunctional iron oxide and liposome-based nanosystems for multimodal diagnosis and therapy. Interface Focus. 2016, 6 (6), 20160055.

      78. Guo J., Rahme K., He Y., Li L.-L., Holmes J., O’Driscoll C. Gold nanoparticles enlighten the future of cancer theranostics. Inter. J. Nanomed. 2017, V. 12, P. 6131–6152.

      79. Jin Y. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release. Acc. Chem. Res. 2014, 47 (1), 138–148.

      80. Zhao Y., Pang B., Luehmann H. et al. Gold nanoparticles doped with (199) Au atoms and their use for targeted cancer imaging by SPECT. Adv. Healthc. Mater. 2016, 5 (8), 928–935.

      81. Liu J., Zhang L., Lei J., Ju H. MicroRNA-Responsive Cancer Cell Imaging and Therapy with Functionalized Gold Nanoprobe. ACS Appl. Mater. Interfaces. 2015, 7 (34), 19016–19023.

      82. Li K., Nejadnik H., Daldrup-Link H. E. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discov. Today. 2017, 22 (9), 1421–1429.

      83. Daldrup-Link H. E. et al. Alk5 inhibition increases delivery of macromolecular and protein-bound contrast agents to tumors. JCI Insight. 2016, V. 1, P. e85608.

      84. Zaimy M. A., Saffarzadeh N., Mohammadi A., Pourghadamyari H., Izadi P., Sarli A., Tavakkoly-Bazzaz J. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 2017, 24 (6), 233–243.