Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2019 № 6 BIOTECHNOLOGICAL PROSPECTS OF MICROALGAE Kirpenko N., Leontieva T.
Print PDF

ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)

Biotechnologia Acta V. 12, No. 6, 2019
https://doi.org/10.15407/biotech12.06.025
P. 25-34,Bibliography 80, English.
Universal Decimal Classification: 582.26: 574.62 : 574.55

BIOTECHNOLOGICAL PROSPECTS OF MICROALGAE

Kirpenko N., Leontieva T.

Institute of Hydrobiology of the National Academy of Sciences of Ukraine, Kyiv

The current state and perspectives of biotechnological use of microscopic algae were analyzed. The main directions of algobiotechnology, due to the physiological and biochemical features of these organisms, the volume of algae production in the world, the types of microalgae that had already been used or had practical prospects, ways of biomass obtaining and productivity increasing of industrial algae cultivation were given. The state of this problem, expediency of algobiotechnology development and prospects of microalgae cultivation in Ukraine were discussed.

Key words: algobiotechnology, microalgae, industrial cultivation, aquaculture.

© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2019

  • References
    • 1. Microalgae – a promising agricultural culture. Available at: http://infoindustria. com.ua/2015/09/18/. (accessed 18 september 2018).

      2. Abdelnour S. A., Abd El-Hack M. E., Arif M., Khafaga A. F., Taha A. E. The application of the microalgae Chlorella spp. as a supplement in broiler feed. World’s Poult. Sci. J. 2019, 75, 305–318. https://doi.org/10.1017/S0043933919000047

      3. Abdelnoiur Sameh., Almeer Rafa, Alkahtani Saad, Alarifi Saud, Abdel-Daim Mohamed, Albashed Gadah. Impacts of Enriching Growing Rabbit Diets with Chlorella vulgaris Microalgae on Growth, Blood Variables, Carcass Traits, Immunological and Antioxidant Indices. Animals. 2019, 9, 788p. https://doi.org/10.3390/ani9100788

      4. Becker E. W. Micro-algae as a source of protein. Biotechnol. Advances. 2007, 25, 207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002 https://doi.org/10.1016/j.biotechadv.2006.11.002

      5. Vonshak A. Scaling up microalgal cultures to commercial scale. European Journal of Phycology. 2017, 52 (4), 407–418. https://doi.org/10.1080/09670262.2017.1365177

      6. Gadiev Rinat, Khaziev Danis, Galina Chulpan, Farrakhov Albert, Farhutdinov Kamil, Dolmatova Irina, Kazanina Marina, Latypova Gulnara. The use of chlorella in goose breeding. AIMS Agriculture and Food. 2019, 4, 349–361.https://doi.org/10.3934/agrfood.2019.2.349

      7. Karunkyi O., Reznik T., Kulidzhanov Ye. Chlorella suspension and its usage in finishing pigs’ rations. Grain Products and Mixed Fodder’s. 2019, 19, 46–49. https://doi.org/10.15673/gpmf.v19i1.1321

      8. The use of food microalgae in the fight against acute malnutrition in order to overcome the consequences of humanitarian disasters and achieve sustainable development. United Nations A/C.2/60/L.14. General Assembly. Sixtieth Session. 31 October 2005.

      9. Sirenko L. A., Sakevych O. J., Kirpenko Yu. O. Method for obtaining chlorophyll-carotene paste with reparative-regenerative properties. Ukraine. Patent 13945. April 24, 1997.

      10. FAO Fisheries and Aquaculture Technical Paper. Rome: FAO. 2013, 583, 67 р.

      11. Lebedeva L. P., Dzhokebayeva S. A. Optimization of growth processes of chlorella and spirulina and the use of pure extracts as biologically active additives to fish feed. Available at: https://bulletin-ecology.kaznu.kz/index.php/1-eco/article/view/303 (accessed 05 December 2019).

      12. Melnykov S., Manankyna E. Use of chlorella in the feeding of farm animals. Nauka i innovacii. 2010, 5 (50), 40–43. (In Russian).

      13. Plutakhin G., Machneva N., Koshchayev A. Chlorella and its use in poultry farming. Available at: http://webpticeprom.ru/ru/articles-birdseed.html?pageID= 1309028642. (accessed 05 december 2019).

      14. Salnikova M. Ya. Chlorella – a new kind of feed. Moskva: KOLOS. 1977, 96 p. (In Russian).

      15. Shatskikh Ye., Gafarov S. H., Boyarintseva G., Safronov S. Use of chlorella in feeding piglets. Kormleniye selskokhozyaystvennykh zhivotnykh i kormoproizvodstvo. 2006, 7, 53–58. (In Russian).

      16. Ponomarev A. V. Development and scientific support of the process of mass transfer during the cultivation of microalgae in a film photobioreactor. The dissertation author’s abstract on scientific degree editions. Voronezh, 2011. (In Russian).

      17. Muzafarov A. M., Taubaev T. T. Cultivation and use of microalgae. Tashkent: Fan. 1984, 185 p. (In Russian).

      18. Frolova M. V. The effectiveness of the use of chlorella suspension, enriched with iodine and selenium, when growing young pigs (Ph.D. dissertation). Volgograd. 2012, 115 p. (In Russian).

      19. Bodnar O. I. Effect of trace elements on lipid metabolism in Chlorella vulgaris Beijer. Visnyk ONU. Biologiya. 2018, 2 (43), 11–22. https://doi.org/10.18524/2077-1746.2018.2(43).146950

      20. Lukjanov V. A., Styfeev A. Y. Applied aspects of the use of microalgae in agrocenosis. Kursk: Kursk State Agricultural Academy, 2014, 181 p. (In Russian).

      21. Brantsevich L. T., Vorobyeva N. M., Karasik V. M. Guidelines for the use of seston as fertilizer for. agricultural plants. Kyiv: Naukova dumka. 1980, 37 p.

      22. Kirpenko N. I. Ways of using biopolymers of microalgae. Naukovi zapysky Ternopilskoho natsionalnoho peduniversytetu. Ser.biol. 2004, 3–4 (24), 48–52. (In Ukrainian).

      23. Sirenko L., Panferov V., Sabluk V. A method of obtaining a glue base of a composition for pre-sowing seed treatment. Ukraine. Patent 13946. April 25, 1997.

      24. Osborne N. J, Webb P. M, Shaw G. R. The toxins of Lyngbya majuscula and their human and ecological health effects. Environ Int. 2001, 27 (5), 381–392. https://doi.org/10.1016/S0160-4120(01)00098-8

      25. Amin-Ul’ Mannan M., Dipannita Khazra, Arun Karnval, Diban Chakravarti Kannan. Algae as a source of raw materials for the production of biofuels. Algologiya. 2017, 27 (3), 337–356. (In Russian).

      26. Zolotareva O. K., Shnyukova Ye. I., Syvash O. O., Mykhaylenko N. F. Prospects for the use of microalgae in biotechnology. Kyiv: Alterpres. 2008, 234 p. (In Ukrainian).

      27. Chernova N. I., Kiseleva S. V., Popel O. S. Efficiency of biodiesel production from microalgae. Teploenerhetyka. 2014, 6, 14–21. (In Russian). https://doi.org/10.1134/S0040363614060010

      28. Meshcheryakova Yu. V., Nagornov S. A. Production of raw materials for biodiesel based on microalgae oil Chlorella. Vestnyk VIESH. 2013, 4 (13), 3335. (In Russian).

      29. Dvoretskiy D. S., Dvoretskiy S. I., Temnov M. S. Technology for producing lipids from microalgae. Tambov: FGBOU VPO “TGTU”. 2015, 103 p. (In Russian).

      30. Nagornov S. A., Meshcheryakova Ju. V. Production of raw materials for biodiesel based on microalgae oil Chlorella. Innovatsii v selskom xozyaystve. 2013, 3 (5), 39–41. (In Russian).

      31. Tsarenko P. M., Borisova Ye. V. The IBASU-A microalgae crop collection is a potential bio-resource for biodiesel production. Algologiya. 2014, 24 (3), 409–412. (In Russian).

      32. Chokshi K., Pancha I., Trivedi K., G eorge B., M aurya R. G hosh A., Mishra S. Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions. Biores. Technol. 2015, 180, 162–171. https://doi.org/10.1016/j.biortech.2014.12.102

      33. Xin L., Hu H. Y., Ke G., Sun Y. X. Effects of different nitrogen and phosphorus concentration on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Biores. Technol. 2010, V. 101, P. 5494–5500. https://doi.org/10.1016/j.biortech.2010.02.016

      34. Sarsekeyeva F. K., Usserbaeva A. A., Zaydan B. K. Mironov K. S., Sidorov R. A., Kozlova A. Yu, Kupriyanova E. V., Sinetova M. A., Los D. 1. Isolation and Characterization of a New Cyanobacterial Strain with a Unique Fatty Acid Composition. Advances in Microbiology. 2014, 4 (15), 1033–1043. https://doi.org/10.4236/aim.2014.415114

      35. Sorokina K. N., Yakovlev V. A., Piligayev A. V. The potential use of microalgae as a feedstock for bioenergy. Kataliz v promyshlennosti. 2012, 2, 63–72. (In Russian).

      36. Tsarenko P., Borysova O., Blume Ya. High biomass producers and promising candidates for biodiesel production from microalgae collection IBASU-A (Ukraine). Oceanological and Hydrobiological Studies. 2016, 45 (1), 79–85. https://doi.org/10.1515/ohs-2016-0008

      37. Zolotareva Ye. K., Shnyukova Ye. I., Podorvanov V. V. Microalgae as producers of water conduit. Algologiya. 2010, 20 (2), 225–249. (In Russian).

      38. Markov V. A., Devyanin S. N., Nagornov S. A., Akimov V. S. Biodiesel fuels from various raw materials. Transport na alternativnom toplive. 2011, 3, 25–31. (In Russian).

      39. Golub N. B. Scientific and technological bases of conversion of renewable raw materials into biomass, biomethane and biodiesel. The dissertation author’s abstract on scientific degree editions. Кyiv. 2015. (In Ukrainian).

      40. Synelnikov O. D., Nykyforov V. V., Malovanyy M. S., Kharlamova O. V. Method of producing biogas from blue-green algae. Ukraine. Patent 105896. April 11, 2016.

      41. Denisov A. A., Zhuykov V. Yu., Sirenko B. I. Wastewater treatment in open water from organic and mineral contamination with. Мoskva: Dostizheniya nauki i tekhniki APK. 2007, 54–56. (In Russian).

      42. Leonova L. I., Stupina V. V. Algae in the posttreatment of wastewater. Kyiv: Naukova dumka. 1990, 184 p.

      43. Gogonin A. V., Shchemelinina T. N., Volodin V. V. The use of microalgae in the process of wastewater treatment at a pulp and paper mill. Biodiagnostics of the state of natural and natural-man-made systems: Materials of the XVth All-Russian Scientific-Practical Conference with International Participation. Vyatskiy gos. in-t biologii Komi nauchnogo tsentra Uralskogo otdeleniya RAN. 2017. (In Russian).

      44. Sharapova I. E., Shubakov A. A., Mikhaylova Ye. A., Volodin V. V. Investigation and use of microalgae for bioremediation of aqueous media. Innovatsii v nauke. 2012, 1 (13), 38–45. (In Russian).

      45. Zhuykov V. Yu. Post-treatment and disinfection of wastewater with algaebacterial microflora of biological ponds. The dissertation author’s abstract on scientific degree editions. Schelkovo, 2009. (In Russian).

      46. Markov S. A. Using algae to produce biofuels and remove excess carbon dioxide from the atmosphere. Alternative energy and ecology: Proceedings of the International Conference. 2009, 2 (70), 83–90.

      47. Kulabukhov V., Karyakin D., Maltsevskaya N. Prospects for the use of microalgae for the absorption of CO2 from the flue gases of industrial enterprises. Ekologiya i promyshlennost Rossii. 2016, 20 (9), 4–8. (In Russian). https://doi.org/10.18412/1816-0395-2016-9-4-8

      48. Romanenko V. D., Kirpenko N. I., Konovets I. M., Krot Yu. G. Species-specific peculiarities of the green algae growth at additional carbon nutrition. Report 1. Growth rate of the green algae at maximal saturation of medium by CO2 in open cultivation system. Hydrob. J. 2010, 3 (46), 60–72. https://doi.org/10.1615/HydrobJ.v46.i3.50

      49. Romanenko V. D., Kirpenko N. I., Konovets I. M., Krot Yu. G. Species-specific peculiarities of the green algae growth at additional carbonic nutrition. Report 2. Growth of Chlorella vulgaris Beijer. strain LARG-3 at CO2 utilization in close cultivation system. Hydrob. J. 2010, 5 (46), 44–50. https://doi.org/10.1615/HydrobJ.v46.i5.50

      50. Sister V. H., Ivannikova Je. M., Cirkov V. H., Kozevnikov Ju. A. The use of microalgae in energy-generating cycles that consume liquid hydrocarbon fuel of fossil origin. Alternativnaya energetika i ekologiya. 2013, 9 (131), 36–41. (In Russian).

      51. Shchemelinina T. N., Anchugova Ye. M., Tarabukin D. V. The strain of the green microalga Acutodesmus obliquus, intended for the purification of wastewater from pollutants in the utilities and pulp and paper industry. Russia. Patent 2556131. July 10, 2015.

      52. Shchemelinina T. N., Markarova M. Yu., Zlobina N. V. Biological product “Universal” and microalgae in the conditions of hydrocarbon pollution. Vestn. biotekhnol. i fiz.-him. biol. 2014, 10 (2), 18–22. (In Russian).

      53. Doria E., Longoni P., Scibila L., Iazzi N., Cella R., Nielsen E. Isolation and characterization of a Scenedesmus acutus strain to be used for bioremediation of urban wastwater. J. Appl. Phycol. 2012, 24, 375–383. https://doi.org/10.1007/s10811-011-9759-z

      54. Davidovich N. A., Davidovich O. I., Podunay Yu. A. Reproductive characteristics of diatoms: importance for cultivation and biotechnology. Fiziologiya rasteniy. 2015, 62 (2), 167–175. (In Russian). https://doi.org/10.1134/S1021443715020041

      55. Zheleznova S. N., Ryabushko V. I., Gevorgiz R. G. The method of producing biomass of the diatom cylindrotheca closterium. Russia. Patent RU 2582182. 20 April, 2016.

      56. Ismailkhodzhayev B. SH. Physiological and biochemical features of green and euglena microalgae and the prospects for their use. The dissertation author’s abstract on scientific degree editions. Tashkent, 1994. (In Russian).

      57. Minyuk G. S., Yerokhin V. Ye., Gordiyenko A. P. Physiological, biochemical and biophysical characteristics of unicellular algae Haematococcus pluvialis – promising astaxanthin. Yu. N. Tokareva, Z. Z. Fynenko, N. V. Shadryna. Sevastopol: EKOSY-Hidrofizika. 2008, 353–382. (In Russian).

      58. Chubchikova I. M., Drobetskaya I. V., Min yuk G. S. Screening of green microalgae as potential sources of natural ketocarotenoids 2. Features of growth and secondary carotenogenesis in representatives of the genus Bracteacoccus (Chlorophyseae). Morskyy ekolohichnyy zhurnal. 2011, 91–97. (In Russian).

      59. Lisovskiy G. M. Managed cultivation of microalgae. Мoskva: Nauka. 1964, 153 p.

      60. Onishchenko Ye. M. On the question of ways to improve the efficiency of groundbased open systems for the cultivation of microalgae. Available at: http://www.jbks.ru/archive/issue-14/article-11/

      61. Romanenko V. D., Krot Yu. G., Sirenko L. A., Solomatina V. D. Biotechnology cultivation of hydrobionts. Kyiv: Instytut hidrobiolohii NAN Ukrainy. 1999, 264 p. (In Ukrainian).

      62. Kirpenko N. I. Dynamics of the content of nitrogen forms in the medium during the intensive cultivation of chlorella. J. Hydrobiological. 2000, 36 (6), 74–81. (In Russian).

      63. Technology and equipment for the cultivation of photoautotrophs and tissue culture. Sbornik nauchnykh trudov. Moskva. 1984, 145 p.

      64. Zhumadilova Zh. Sh., Sapargaliyeva G. M., Izimbet A. P. Cultivation of microalgae to obtain biomass in the laboratory. Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovaniy. 2015, 10 (5), 838–839. (In Russian).

      65. Koller Martin. Design of Closed Photobioreactors for Algal Cultivation. Algal Biorfineries. 2015, 133–186. https://doi.org/10.1007/978-3-319-20200-6_4

      66. Szyjka Sh. J., Mandal Sh., Schoepp N. Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production. Algal Research. 2017, 24, 378–386. https://doi.org/10.1016/j.algal.2017.04.006

      67. Kirpenko N. I, Tsarenko P. M., Usenko O. M., Musiy T. O. Strain of green microalgae Monoraphidium griffithii (Berk.) Komark.-Legner. HPDP-105 is a high-lipid biomass producer. Ukraine. Patent 09629. September 25, 2018.

      68. European Society of Microalgal Biotechnology. Available at: https://uia.org/s/or/en/1100056397 (accessed 05 december 2019).

      69. Kirpenko N. I., Usenko O. M., Musiy T. O. Comparative analysis of the content of proteins, carbohydrates, and lipids in the cells of green microalgae. J. Hydrobiological. 2018, 54 (2), 81–91. https://doi.org/10.1615/HydrobJ.v54.i2.80

      70. Bioreactor for growing chlorella. Available at: www.biovet-service.ru/uslugi/chlorellarost.html (accessed 05 December 2019).

      71. Bakay S. M., Shelest V. P., Volokh V. N. The use of chlorella in the diet of pigs. Pig breeding. Kyiv: Urozhai. 1966, 2, 63–67. (In Russian).

      72. Myslovich V. O., Karpenko V. I., Sirenko L. A., Kirpenko N. I. The use of microalgae for the purification of liquid waste poultry farms. Kyiv: Dep. v VINITI. 1987, 11 p.

      73. Sirenko L. A., Kozitskaya V. N., Konyshev B. I., Krot Yu. G., Kirpenko N. I., Komarenko Ye. I. Growing algae on the combustion gases of oil producing and refining enterprises. Thesis report of the All-Russian Conference “Industrial cultivation of microalgae”, Uzbekistan: Andizhan. 1990.

      74. Sirenko L. A., Kirpenko N. Y., Komarenko O. I. Resources of biomass of macro- and microalgae in Ukraine – a source for the preparation of biologically active substances. Abstracts of the Fourth International Conference on Medical Botany. Kyiv. 1997, 51–53.

      75. Bilous O. P., Nezbrytska I. M., Klochenko P. D., Kirpenko N. I. Collection of microalgae cultures HPDP. Kyiv. 2018, 36 p.

      76. Sirenko L. A., Rybak N. V., Parshykova T. V., Pakhomova M. N. Collection of living cultures of microscopic algae (acronym collection – HPDP. Kyiv: Fitosotsiotsentr. 2005, 53 p. (In Ukrainian).

      77. Live spirulina is grown on an aqua farm in Ukraine. Available for address http://spirulinalive.com.ua

      78. Official site of PE “Chlorella Ukraine”. Available at: https://hlorella.jimdo.com/

      79. Trifonov V. Yu. The use of flue gases generated in the process of thermal processing of municipal solid waste for the cultivation of microalgae Spirulina platensis. Ecological Bulletin of Russia. 2009, 11, 28–32.

      80. The state of world fisheries and aquaculture. Contribution to universal food security and nutrition. World production of aquatic plants in aquaculture. Rome: FAO. 2016, 216 p.