Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2019 № 5 The use of herbal remedies in the treatment of hepatobiliary diseases: trends and prospects M. Gahramanova, M. Rudyk, L. Skivka
Print PDF

ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)

Biotechnologia Acta, V. 12, No. 5, 2019
https://doi.org/10.15407/biotech12.05.042
P. 42-62, Bibliography 173, English.
Universal Decimal Classification: 615.322:615.244

THE USE OF HERBAL REMEDIES IN THE TREATMENT OF HEPATOBILIARY DISEASES: TRENDS AND PROSPECTS

M. Gahramanova1,2, M. Rudyk2, L. Skivka2

1 Nargiz Medical Center, Baku, Azerbaijan
2 ESC “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Ukraine

Hepatobiliary system diseases represent an important medical and social problem due to increasing morbidity rates worldwide. Liver and biliary diseases are characterized by complex pathophysiology as well as by multi- and comorbidity. The treatment of such diseases necessitates multitarget drug development. The effectiveness of current drugs in the treatment of hepatobiliary disorders remains low and the incidence of side-effects are profound. This actualizes the search and development of highly effective hepatoprotectors with a low incidence of side effects. Medicinal plants potentially constitute a sourse of such preparations. The review summarizes the data concerning mechanisms of hepatoprotective and immunomodulatory effects of medicinal plants and their phytoconstituents. The prospects for the development and use of herbal remedies in the treatment of hepatobiliary diseases are outlined.

Key words: hepatobiliary diseases, medicinal plants, hepatoprotectors, immunomodulators.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019

  • References
    • 1. Peery A. F., Crockett S. D., Murphy C. C., Lund J. L., Dellon E. S., Williams J. L., Jensen E. T., Shaheen N. J., Barritt A. S., Lieber S .R., Kochar B., Barnes E. L., Fan Y. C., Pate V., Galanko J., Baron T. H., Sandler R. S. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2018. Gastroenterology. 2019, 156 (1), 254–272.e11. https://doi.org/10.1053/j.gastro.2018.08.063

      2. Pimpin L., Cortez-Pinto H., Negro F., Corbould E., Lazarus J. V., Webber L., Sheron N. Burden of liver disease in Europe: Epidemiology and analysis of risk factors to identify prevention policies. J. Hepatol. 2018, 69 (3), 718–735. https://doi.org/10.1016/j.jhep.2018.05.011 https://doi.org/10.1016/j.jhep.2018.05.011

      3. Das S., Mahakkanukrauh P., Ho C. C. The burden of gastrointestinal, liver, and pancreatic diseases: the global scenario. Gastroenterology. 2016, 150 (4), 1045–1046. https://doi.org/10.1053/j.gastro.2016.01.036

      4. Younossi Z., Henry L. Contribution of alcoholic and nonalcoholic fatty liver disease to the burden of liver-related morbidity and mortality. Gastroenterology. 2016, 150 (8), 1778–1785. https://doi.org/10.1053/j.gastro.2016.03.005

      5. Rowe I. A. Lessons from epidemiology: the burden of liver disease. Dig. Dis. 2017, 35 (4), 304–309. https://doi.org/10.1159/000456580

      6. Shmal'ko O. O. Development of composition and technology of phytosyrup of hepatoprotective and choleretic action. Ph.D. dissertation, Drug Tech., Pharm. Org. and For. Pharmacy. National University of Pharmacy. Kharkiv, Ukraine. 2017. (In Ukrainian).

      7. Skubyc'ka L. D., Severynovs'ka O. V. Complex analysis of blood parameters and acid-forming function of the stomach in diseases of the hepatobiliary system with concomitant pathologies. Visnyk Harkivs'kogo nacional'nogo universytetu imeni V.N.Karazina, Serija «Biologija». 2016, V. 27, P. 139–149. (In Ukrainian).

      8. Nedel's'ka S. M., Mazur V. I., Shumna T. Je. Diseases of the hepatobiliary system and pancreas in children: a textbook for students of the 6th year of medical faculty, interns, pediatricians, family doctors. Zaporizhzhja: [ZDMU]. 2017, 113 p. (In Ukrainian).

      9. Everhart J. E., Ruhl C. E. Burden of digestive diseases in the United States Part III: liver, biliary tract, and pancreas. Gastroenterology. 2009, 136 (4), 1134–1144. https://doi.org/10.1053/j.gastro.2009.02.038

      10. Resnetnyak V. I. Concept of pathogenesis and treatment of cholelithiasis. World J. Hepatol. 2012, 4 (2), 18–34. https://doi.org/10.4254/wjh.v4.i2.18

      11. Ertel A. E., Bentrem D., Abbott D. E. Gall bladder cancer. Cancer Treat Res. 2016, V. 168, P. 101–120. https://doi.org/10.1007/978-3-319-34244-3_6

      12. Li X., Guo X., Ji H., Yu G., Gao P. Gallstones in patients with chronic liver diseases. Biomed. Res. Int. 2017, V. 2017, P. 9749802. https://doi.org/10.1155/2017/9749802

      13. Lammert F., Gurusamy K., Ko C. W., Miquel J. F., Méndez-Sánchez N., Portincasa P., van Erpecum K. J., van Laarhoven C. J., Wang D. Q. Gallstones. Nat. Rev. Dis. Primers. 2016, V. 2, P. 16024. https://doi.org/10.1038/nrdp.2016.24

      14. EASL. Clinical practice guidelines: management of cholestatic liver diseases. Journal of Hepatology. 2009, 51 (2), 237–267. https://doi.org/10.1016/j.jhep.2009.04.009

      15. Mauss S. et al. Hepatology. Sydney: Flying Publisher. 2015, 655 p.

      16. Chekman I. S. Clinical pharmacology of hepatoprotectors. Lik. Sprava. 2001, V. 1, P. 15–19.

      17. Gasanova O. V., Sarkisova E. O., Chumak A. A., Ovsyannikova L. M., Nosach O. V., Alohina L. M., Gasanov V. A., Kryzhanivska V. V. Comparative characteristics of hepatoprotectors used for the treatment of non alcoholic steatohepatitis associated with herpesvirus infection in sufferers of the Chornobyl accident. Probl. Radiac. Med. Radiobiol. 2017, V. 22, P. 339–352. https://doi.org/10.33145/2304-8336-2017-22-339-352

      18. Somova M. N., Muzalevskaia E. N., Nikolaevskiĭ V. A., Buzlama A. V., Batishcheva G. A., Chernov Iu. N. Drug-induced liver damage and the problem of its pharmacological correction. Eksp. Klin. Farmakol. 2013, 76 (9), 38–43.

      19. Gu X., Manautou J. E. Molecular mechanisms underlying chemical liver injury. Expert Rev. Mol. Med. 2012, V. 14, P. e4. https://doi.org/10.1017/S1462399411002110

      20. Kumar A. A review on hepatoprotective herbal drugs. IJRPC. 2012, 2 (1), 92–102.

      21. Kurkina A. V., Galyamova V. R., Kurkin V. A., Avdeeva E. V. Possibilities of phytotherapy at digestive system diseases. Pharmacy & Pharmacology. 2016, 2 (15), 26–40. https://doi.org/10.19163/2307-9266-2016-4-2(15)-26-40

      22. Ali M., Khan T., Fatima K., Ali Q. U. A., Ovais M., Khalil A. T., Ullah I., Raza A., Shinwari Z. K., Idrees M. Selected hepatoprotective herbal medicines: Evidence from ethnomedicinal applications, animal models, and possible mechanism of actions. Phytother. Res. 2018, 32 (2), 199–215. https://doi.org/10.1002/ptr.5957

      23. Bedi O., Bijjem K. R. V., Kumar P., Gauttam V. Herbal induced hepatoprotection and hepatotoxicity: a critical review. Indian J. Physiol. Pharmacol. 2016, 60 (1), 6–21.

      24. Ilyas U., Katare D. P., Aeri V., Naseef P. P. A review of hepatoprotective and immunomodulatory herbal plants. Pharmacogn. Rev. 2016, 10 (19), 66–70. https://doi.org/10.4103/0973-7847.176544

      25. Enioutina E. Y., Salis E. R., Job K. M., Gubarev M. I., Krepkova L. V., Sherwin C. M. Herbal Medicines: challenges in the modern world. Part 5. status and current directions of complementary and alternative herbal medicine worldwide. Expert Rev. Clin. Pharmacol. 2017, 10 (3), 327–338. https://doi.org/10.1080/17512433.2017.1268917

      26. Treister-Goltzman Y., Peleg R. Trends in publications on complementary and alternative medicine in the medical literature. Journal of Complementary and Integrative Medicine. 2015, 12 (2), 111–115. https://doi.org/10.1515/jcim-2014-0055

      27. Efferth T., Zacchino S., Georgiev M. I., Liu L., Wagner H., Panossian A. Nobel Prize for artemisinin brings phytotherapy into the spotlight. Phytomedicine. 2015, 22 (13), A1–A3. https://doi.org/10.1016/j.phymed.2015.10.003

      28. Hertweck C. Natural products as source of therapeutics against parasitic diseases. Angew. Chem. Int. Ed. Engl. 2015, 54 (49), 14622–14624. https://doi.org/10.1002/anie.201509828

      29. Sahoo N., Manchikanti P., Dey S. Herbal drugs: standards and regulation. Fitoterapia. 2010, 81 (6), 462–471. https://doi.org/10.1016/j.fitote.2010.02.001

      30. Zhang J., Wider B., Shang H., Li X., Ernst E. Quality of herbal medicines: challenges and solutions. Complement Ther. Med. 2012, 20 (1–2), 100–106. https://doi.org/10.1016/j.ctim.2011.09.004

      31. Govindaraghavan S., Sucher N. J. Quality assessment of medicinal herbs and their extracts: Criteria and prerequisites for consistent safety and efficacy of herbal medicines. Epilepsy Behav. 2015, 52 (Pt B), 363–371. https://doi.org/10.1016/j.yebeh.2015.03.004.

      32. Kolomojec' M. Ju., Vashenjak O. O. Comorbidity and polymorbidity in therapeutic practice. Ukrai'ns'kyj medychnyj chasopys. 2012, 5 (91), 140–143. (In Ukrainian).

      33. Tarlovskaya E. I. Comorbidity and polymorbidity – a modern interpretation and urgent tasks facing the therapeutic community. Kardiologiia. 2018, 58 (9), 29–38. https://doi.org/10.18087/cardio.2562

      34. Samorodskaja I. V., Bolotova E. V. Terminological and demographic aspects of comorbidity. Adv. Gerontol. 2016, 29 (3), 471–477.

      35. Jakovljević M., Ostojić L. Comorbidity and multimorbidity in medicine today: challenges and opportunities for bringing separated branches of medicine closer to each other. Psychiatr. Danub. 2013, 25 (1), 18–28.

      36. Meghani S. H., Buck H. G., Dickson V. V., Hammer M. J., Rabelo-Silva E. R., Clark R., Naylor M. D. The conceptualization and measurement of comorbidity: a review of the interprofessional discourse. Nurs. Res. Pract. 2013, V. 2013, P. 192782. https://doi.org/10.1155/2013/192782

      37. Jepsen P. Comorbidity in cirrhosis. World J. Gastroenterol. 2014, 20 (23), 7223–7230. https://doi.org/10.3748/wjg.v20.i23.7223

      38. Scheen A. J. Beneficial effects of SGLT2 inhibitors on fatty liver in type 2 diabetes: A common comorbidity associated with severe complications. Diabetes Metab. 2019, 45 (3), 213–223. https://doi.org/10.1016/j.diabet.2019.01.008

      39. Zhang Z. M., Liu Z., Liu L. M., Zhang C., Yu H. W., Wan B. J., Deng H., Zhu M. W., Liu Z. X., Wei W. P., Song M. M., Zhao Y. Therapeutic experience of 289 elderly patients with biliary diseases. World J. Gastroenterol. 2017, 23 (13), 2424–2434. https://doi.org/10.3748/wjg.v23.i13.2424

      40. Lawler E., Avila A. Alzheimer disease: monotherapy vs. combination therapy. Am. Fam. Physician. 2017, 95 (7), 452.

      41. Ohar J. A., Donohue J. F. Mono- and combination therapy of long-acting bronchodilators and inhaled corticosteroids in advanced COPD. Semin. Respir. Crit. Care Med. 2010, 31 (3), 321–333. https://doi.org/10.1055/s-0030-1254072

      42. Zhou Z., Tang D. H., Xie J., Ayyagari R., Wu E., Niravath P. A. Systematic literature review of the impact of endocrine monotherapy and in combination with targeted therapy on quality of life of postmenopausal women with HR+/HER2-advanced breast cancer. Adv. Ther. 2017, 34 (12), 2566–2584. https://doi.org/10.1007/s12325-017-0644-2

      43. Zhang A., Sun H., Wang X. Potentiating therapeutic effects by enhancing synergism based on active constituents from traditional medicine. Phytother Res. 2014, 28 (4), 526–533. https://doi.org/10.1002/ptr.5032

      44. Liu J., Liu J., Shen F., Qin Z., Jiang M., Zhu J., Wang Z., Zhou J., Fu Y., Chen X., Huang C., Xiao W., Zheng C., Wang Y. Systems pharmacology analysis of synergy of TCM: an example using saffron formula. Sci. Rep. 2018, 8 (1), 380. https://doi.org/10.1038/s41598-017-18764-2

      45. Izzo A. A., Hoon-Kim S., Radhakrishnan R., Williamson E. M. A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytotherapy research. 2016, 30 (5), 691–700. https://doi.org/10.1002/ptr.5591

      46. Marignani M., Gallina S., Di Fonzo M., Deli I., Begini P., Gigante E., Epifani M., Angeletti S., Delle Fave G. Use and safety perception of herbal remedies in patients with liver/biliary tract disorders: an Italian study. J. Clin. Gastroenterol. 2010, 44 (1), S54–57. https://doi.org/10.1097/MCG.0b013e3181e658bb

      47. Sultana B., Yaqoob S., Zafar Z., Bhatti H. N. Escalation of liver malfunctioning: A step toward Herbal Awareness. J. Ethnopharmacol. 2018, V. 216, P. 104–119. https://doi.org/10.1016/j.jep.2018.01.002

      48. Soleimani V., Delghandi P. S., Moallem S. A., Karimi G. Safety and toxicity of silymarin, the major constituent of milk thistle extract: An updated review. Phytother. Res. 2019, 33 (6), 1627–1638. https://doi.org/10.1002/ptr.6361

      49. Watychowicz K., Janda K., Jakubczyk K., Wolska J. Chaenomeles – health promoting benefits. Rocz. Panstw. Zakl. Hig. 2017, 68 (3), 217–227.

      50. Rjeibi I., Ben Saad A., Hfaiedh N. Oxidative damage and hepatotoxicity associated with deltamethrin in rats: The protective effects of Amaranthus spinosus seed extract. Biomed. Pharmacother. 2016, V. 84, P. 853–860. https://doi.org/10.1016/j.biopha.2016.10.010

      51. Ibadullayeva S., Gasimov H., Gahramanova M., Zulfugarova P., Novruzova L. Medico-Ethnobotanical Inventory (Liver and Gallbladder Ducts Illnesses) of Nakhchivan AR, Azerbaijan. International Journal of Sciences. 2015, 1 (06), 80–88. https://doi.org/10.18483/ijSci.739

      52. Gahramanova M., Dovhyi R., Rudyk M., Molozhava O., Svyatetska V., Skivka L. Phytochemical screening of polyherbal composition based on Portulaca oleracea and it’s effect on macrophage oxidative metabolism. Biotechnol. acta. 2019, 12 (2) 63–70. https://doi.org/10.15407/biotech12.02.063

      53. Zhang A., Sun H., Wang X. Recent advances in natural products from plants for treatment of liver diseases. Eur. J. Med. Chem. 2013, V. 63, P. 70–77. https://doi.org/10.1016/j.ejmech.2012.12.062

      54. Bansal J., Kumar N., Malviya R., Sharma P. K. Hepatoprotective models and various natural product used in hepatoprotective agents: a review. Pharmacogn. Commun. 2014, V. 4, P. 1–30. https://doi.org/10.5530/pc.2014.3.2

      55. Domitrovic R., Potocnjak I. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives. Arch. Toxicol. 2016, 90 (1), 39–79. https://doi.org/10.1007/s00204-015-1580-z

      56. Balasundram N., Sundram K., Samman S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem. 2006, V. 99, P. 191–203. https://doi.org/10.1016/j.foodchem.2005.07.042

      57. Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79 (5), 727–747. https://doi.org/10.1093/ajcn/79.5.727

      58. Mohib M., Afnan K., Paran T. Z., Khan S., Sarker J., Hasan N., Hasan I., Sagor A. T. Beneficial role of citrus fruit polyphenols against hepatic dysfunctions: a review. J. Diet. Suppl. 2018, 15 (2), 223–250. https://doi.org/10.1080/19390211.2017.1330301

      59. Pereira C., Barros L., Ferreira I. C. Extraction, identification, fractionation and isolation of phenolic compounds in plants with hepatoprotective effects. J. Sci. Food Agric. 2016, 96 (4), 1068–1084. https://doi.org/10.1002/jsfa.7446

      60. Kurkin V. A., Kurkina A. V., Avdeeva E. V. Flavonoids as biologically active compounds of medicinal plants. Fundamental'nye issledovanija. 2013, 11 (9), 1897–1901. (In Russian).

      61. Ghosh N., Ghosh R., Mandal V., Mandal S. C. Recent advances in herbal medicine for treatment of liver diseases. Pharm. Biol. 2011, 49 (9), 970–988. https://doi.org/10.3109/13880209.2011.558515

      62. Federico A., Dallio M., Loguercio C. Silymarin/silybin and chronic liver disease: a marriage of many years. Molecules. 2017, 22 (2), pii: E191. https://doi.org/10.3390/molecules22020191

      63. Vovk E. I. Milk thistle in modern hepatology: the relay race of generations from Ancient Greece to nowadays. Rus. Med. zh. 2010, V. 30, P. 18–37. (In Russian).

      64. An Z., Qi Y. M., Huang D. J., Gu X., Tian Y., Li P., Li H., Zhang Y. EGCG inhibits Cd2+-induced apoptosis through scavenging ROS rather than chelating Cd2+ in HL-7702 cells. Toxicol. Mech. Method. 2014, 24 (4), 259–267. https://doi.org/10.3109/15376516.2013.879975

      65. Zhang T. S., Kimura Y., Jiang S. Y., Harada K., Yamashita Y., Ashida H. Luteolin modulates expression of drug-metabolizing enzymes through the AhR and Nrf2 pathways in hepatic cells. Arch. Biochem. Biophys. 2014, V. 557, P. 36–46. https://doi.org/10.1016/j.abb.2014.05.023

      66. Li S., Tan H. Y., Wang N., Cheung F., Hong M., Feng Y. The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxid. Med. Cell Longev. 2018, V. 2018, P. 8394818. https://doi.org/10.1155/2018/8394818

      67. Sun X., Duan X., Wang C., Liu Z., Sun P., Huo X., Ma X., Sun H., Liu K., Meng Q. Protective effects of glycyrrhizic acid against non-alcoholic fatty liver disease in mice. Eur. J. Pharmacol. 2017, V. 806, P. 75–82. https://doi.org/10.1016/j.ejphar.2017.04.021

      68. Sil R., Ray D., Chakraborti A. S. Glycyrrhizin ameliorates metabolic syndrome-induced liver damage in experimental rat model. Mol. Cell Biochem. 2015, 409 (1–2), 177–189. https://doi.org/10.1007/s11010-015-2523-y

      69. Xu G. B., Xiao Y. H., Zhang Q. Y., Zhou M., Liao S. G. Hepatoprotective natural triterpenoids. Eur. J. Med. Chem. 2018, V. 145, P. 691–716. https://doi.org/10.1016/j.ejmech.2018.01.011

      70. Sánchez-Crisóstomo I., Fernández-Martínez E., Cariño-Cortés R., Betanzos-Cabrera G., Bobadilla-Lugo R. A. Phytosterols and triterpenoids for prevention and treatment of metabolic-related liver diseases and hepatocellular carcinoma. Curr. Pharm. Biotechnol. 2019, 20 (3), 197–214. https://doi.org/10.2174/1389201020666190219122357

      71. Kandanur S. G. S., Tamang N., Golakoti N. R., Nanduri S. Andrographolide: A natural product template for the generation of structurally and biologically diverse diterpenes. Eur. J. Med. Chem. 2019, V. 176, P. 513–533. https://doi.org/10.1016/j.ejmech.2019.05.022

      72. Tan W. S. D., Liao W., Zhou S., Wong W. S. F. Is there a future for andrographolide to be an anti-inflammatory drug? Deciphering its major mechanisms of action. Biochem. Pharmacol. 2017, V. 139, P. 71–81. https://doi.org/10.1016/j.bcp.2017.03.024

      73. Jia R., Du J. L., Cao L. P., Liu Y. J., Xu P., Yin G. J. Protective action of the phyllanthin against carbon tetrachloride-induced hepatocyte damage in Cyprinus carpio. In Vitro Cell. Dev. Biol. Anim. 2016, 52 (1), 1–9. https://doi.org/10.1007/s11626-015-9946-3

      74. Lu K. L., Wang L. N., Zhang D. D., Liu W. B., Xu W. N. Berberine attenuates oxidative stress and hepatocytes apoptosis via protecting mitochondria in blunt snout bream Megalobrama amblycephala fed high-fat diets. Fish Physiol. Biochem. 2017, 43 (1), 65–76. https://doi.org/10.1007/s10695-016-0268-5

      75. Neag M. A., Mocan A., Echeverría J., Pop R. M., Bocsan C. I., Crişan G., Buzoianu A. D. Berberine: botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol. 2018, V. 9, P. 557. https://doi.org/10.3389/fphar.2018.00557

      76. Chernyh V. P. Pharmaceutical encyclopedia. 2nd ed., revised and enlarged. National University of Pharmacy of Ukraine. Kyiv: Morion. 2010, 1632 p. (In Ukrainian).

      77. Glushchenko A., Vladymyrova I., Georgiyants V. The substantiation of the selection of medicinal plants and their rational application in diseases of the hepatobiliary system. ScienceRise. Pharmaceutical Science. 2018, V. 2, P. 9–16. https://doi.org/10.15587/2519-4852.2018.129642

      78. Fifi A. C., Axelrod C. H., Chakraborty P., Saps M. Herbs and spices in the treatment of functional gastrointestinal disorders: a review of clinical trials. Nutrients. 2018, 10 (11), pii: E1715. https://doi.org/10.3390/nu10111715

      79. Kelber O., Bauer R., Kubelka W. Phytptherapy in functional gastrointestinal disorders. Dig. Dis. 2017, V. 35, P. 36–42. https://doi.org/10.1159/000485489

      80. Daniyal M., Akram M., Zainab R., Munir N., Sharif A., Shah S. M. A., Liu B., Wang W. Prevalence and current therapy in chronic liver disorders. Inflammopharmacology. 2019, 27 (2), 213–231. https://doi.org/10.1007/s10787-019-00562-z

      81. Verhelst X., Dias A. M., Colombel J. F., Vermeire S., Van Vlierberghe H., Callewaert N., Pinho S. S. Protein glycosylation as a diagnostic and prognostic marker of chronic inflammatory gastrointestinal and liver diseases. Gastroenterology. 2019, pii: S0016-5085(19)41451-0. https://doi.org/10.1053/j.gastro.2019.08.060

      82. Chen P., Wang Y. Y., Chen C., Guan J., Zhu H. H., Chen Z. The immunological roles in acute-on-chronic liver failure: An update. Hepatobiliary Pancreat. Dis. Int. 2019, 18 (5), 403–411. https://doi.org/10.1016/j.hbpd.2019.07.003

      83. Martin-Mateos R., Alvarez-Mon M., Albillos A. Dysfunctional immune response in acute-on-chronic liver failure: it takes two to tango. Front. Immunol. 2019, V. 10, P. 973. https://doi.org/10.3389/fimmu.2019.00973

      84. Laleman W., Claria J., Van der Merwe S., Moreau R., Trebicka J. Systemic inflammation and acute-on-chronic liver failure: too much, not enough. Can. J. Gastroenterol. Hepatol. 2018, V. 2018, P. 1027152. https://doi.org/10.1155/2018/1027152

      85. Li S., Hong M., Tan H. Y., Wang N., Feng Y. Insights into the role and interdependence of oxidative stress and inflammation in liver diseases. Oxid. Med. Cell. Longev. 2016, V. 2016, P. 4234061. https://doi.org/10.1155/2016/4234061

      86. Das S. K., DesAulniers J., Dyck J. R., Kassiri Z., Oudit G. Y. Resveratrol mediates therapeutic hepatic effects in acquired and genetic murine models of iron-overload. Liver Int. 2016, 36 (2), 246–257. https://doi.org/10.1111/liv.12893

      87. Jiang S. L., Hu X. D., Liu P. Immunomodulation and liver protection of Yinchenhao decoction against concanavalin A-induced chronic liver injury in mice. J. Integr. Med. 2015, 13 (4), 262–268. https://doi.org/10.1016/S2095-4964(15)60185-6

      88. Simon A. K., Hollander G. A., McMichael A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 2015, 282 (1821), 20143085. https://doi.org/10.1098/rspb.2014.3085

      89. Scully, Georgakopoulou E. A., Hassona Y. The immune system: basis of so much health and disease: 3. Adaptive Immunity. Dent. Update. 2017, 44 (4), 322–324, 327. https://doi.org/10.12968/denu.2017.44.4.322

      90. Ganeshan K., Chawla A. Metabolic regulation of immune responses. Annu. Rev. Immunol. 2014, V. 32, P. 609–634. https://doi.org/10.1146/annurev-immunol-032713-120236

      91. Baraya Y. S., Wong K. K., Yaacob N. S. The immunomodulatory potential of selected bioactive plant-based compounds in breast cancer: a review. Anticancer Agents Med. Chem. 2017, 17 (6), 770–783. https://doi.org/10.2174/1871520616666160817111242

      92. Akram M., Hamid A., Khalil A., Ghaffar A., Tayyaba N., Saeed A., Ali M., Naveed A. Review on medicinal uses, pharmacological, phytochemistry and immunomodulatory activity of plants. Int. J. Immunopathol. Pharmacol. 2014, 27 (3), 313–319. https://doi.org/10.1177/039463201402700301

      93. Singh R. K. Tinospora cordifolia as an adjuvant drug in the treatment of hyper-reactive malarious splenomegaly – case reports. J. Vect. Borne. Dis. 2005, V. 3, P. 36–38.

      94. Dhama K., Latheef S. K., Mani S., Samad H., Karthik A. K., Tiwari R., Khan R. U. Multiple beneficial applications and modes of action of herbs in poultry health and production-A review. Inter. J. Pharmacol. 2015, 11 (3), 152–176.

      95. Wagner H. K. M. Immunostimulants and Adaptogens from Plants. In: Recent Advances in Phytochemistry. Arnason J. T., Mata R., Romeo J. T. (eds). Boston: Springer. 1995, P. 1–18.https://doi.org/10.1007/978-1-4899-1778-2_1

      96. Kumar D., Arya V., Kaur R., Bhat Z. A., Gupta V. K., Kumar V. A review of immunomodulators in the Indian traditional healthcare system. J. Microbiol. Immunol. Infect. 2012, 45 (3), 165–184. https://doi.org/10.1016/j.jmii.2011.09.030

      97. Massa S., Franconi R. Plant genes and plants proteins as adjuvants in cancer vaccination. Medicinal and Aromatic Plant Science and Biotechnology. 2012, 6 (special issue 2), 1–9.

      98. Sander V. A., Corigliano M. G., Clemente M. Promising plant-derived adjuvants in the development of coccidial vaccines. Front. Vet. Sci. 2019, V. 6, P. 20. https://doi.org/10.3389/fvets.2019.00020

      99. Massa S., Paolini F., Curzio G., Cordeiro M. N., Illiano E., Demurtas O. C., Franconi R., Venuti A. A plant protein signal sequence improved humoral immune response to HPV prophylactic and therapeutic DNA vaccines. Hum. Vaccin Immunother. 2017, 13 (2), 271–282. https://doi.org/10.1080/21645515.2017.1264766

      100. Illiano E., Demurtas O. C., Massa S., Di Bonito P., Consalvi V., Chiaraluce R., Zanotto C., De Giuli Morghen C., Radaelli A., Venuti A., Franconi R. Production of functional, stable, unmutated recombinant human papillomavirus E6 oncoprotein: implications for HPV-tumor diagnosis and therapy. J. Transl. Med. 2016, 14 (1), 224. https://doi.org/10.1186/s12967-016-0978-6

      101. Shah S. A., Sander S., White C. M., Rinaldi M., Coleman C. I. Evaluation of echinacea for the prevention and treatment of the common cold: a meta-analysis. Lancet. Infect. Dis. 2007, 7 (7), 73–80. https://doi.org/10.1016/S1473-3099(07)70160-3

      102. Haria E. N., Perera M. A. D. N., Senchina D. S. Immunomodulatory effects of Echinacea laevigata ethanol tinctures produced from different organs. Bioscience Horizons: The International Journal of Student Research. 2016, V. 9, P. hzw001. https://doi.org/10.1093/biohorizons/hzw001

      103. Li Y., Wang Y., Wu Y., Wang B., Chen X., Xu X., Chen H., Li W., Xu X. Echinacea pupurea extracts promote murine dendritic cell maturation by activation of JNK, p38 MAPK and NF-κB pathways. Dev. Comp. Immunol. 2017, V. 73, P. 21–26. https://doi.org/10.1016/j.dci.2017.03.002

      104. EL-mahmood M. A. Efficacy of crude extracts of garlic (Allium sativum Linn) against nosocomial Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniea and Pseudomonas aeruginosa. J. Med. Plants Res. 2009, V. 3, P. 179–185.

      105. Weber N. D., Andersen D. O., North J. A., Murray B. K., Lawson L. D., Hughes B. G. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta. Med. 1992, 58 (2), 417–423. https://doi.org/10.1055/s-2006-961504

      106. Mikaili P., Maadirad S., Moloudizargari M., Aghajanshakeri S., Sarahroodi S. Therapeutic uses and pharmacological properties of Garlic, Shallot, and their biologically active compounds. Iran. J. Basic Med. Sci. 2013, 16 (10), 1031–1048.

      107. Lee J. S., Lee Y., Lee Y., Hwang H. S., Kim K., Ko E., Kim M., Kang S. Ginseng protects against respiratory syncytial virus by modulating multiple immune cells and inhibiting viral replication. Nutrients. 2015, 7 (2), 1021–1036. https://doi.org/10.3390/nu7021021

      108. Quan F. S., Compans R. W., Cho Y. K., Kang S. M. Ginseng and Salviae herbs play a role as immune activators and modulate immune responses during influenza virus infection. Vaccine. 2007, V. 25, P. 272–282. https://doi.org/10.1016/j.vaccine.2006.07.041

      109. Sakure S., Negi V. D., Mitra S. K., Nandakumar K. S., Chakravortty D. Vaccine with herbal adjuvant—a better cocktail to combat the infection. Vaccine. 2008, 26 (2008), 3387–3388. https://doi.org/10.1016/j.vaccine.2008.01.060

      110. Ulbricht C., Basch E., Cheung L., Goldberg H., Hammerness P., Isaac R., Khalsa K. P., Romm A., Rychlik I., Varghese M., Weissner W., Windsor R. C., Wortley J. An evidence-based systematic review of Elderberry and Elderflower (Sambucus nigra) by the natural standard research collaboration. J. Diet. Suppl. 2014, 11 (1), 80–120. https://doi.org/10.3109/19390211.2013.859852

      111. Okonkwo C., Oladele O., Nwiyi P. The pattern of immunomodulation of ImmuPlus on the Infectious Bursal Disease (IBD) antibody of vaccinated broiler chickens. J. Vet. Adv. 2015, 5 (1), 808–813. https://doi.org/10.5455/jva.20141213022835

      112. Kumar K. M., Ramaiah S. Pharmacological importance of Echinacea Purpurea. Int. J. Pharma. Bio. Sci. 2011, 2 (4), 304–314.

      113. Janeway C. A. Jr., Travers P., Walport M., Shlomchik M. J. Immunobiology: The Immune System in Health and Disease: 5th edition. NY: Garland Publishing. 2001, 884 p.

      114. Tisoncik J. R., Korth M. J., Simmons C. P., Farrar J., Martin T. R., Katze M. G. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 2012, 76 (1), 16–32. https://doi.org/10.1128/MMBR.05015-11

      115. Liu Q., Zhou Y. H., Yang Z. Q. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell. Mol. Immunol. 2016, 13 (1), 3–10. https://doi.org/10.1038/cmi.2015.74

      116. Wheatley D. Stress-induced insomnia treated with kava and valerian: singly and in combination. Hum. Psychopharmacol. 2001, 16 (4), 353–356. https://doi.org/10.1002/hup.299

      117. Scholey A. B., Kennedy D. O. Acute, dose-dependent cognitive effects of Ginkgo biloba, Panax ginseng and their combinationin healthy young volunteers: differential interactions with cognitie demand. Hum. Psychopharmacol. 2002, 17 (1), 35–44. https://doi.org/10.1002/hup.352

      118. Gupta V. K., Fatima A., Faridi U., Negi A. S., Shanker K., Kumar J. K., Rahuja N., Luqman S., Sisodia B. S., Saikia D., Darokar M. P., Khanuja S. P. Antimicrobial potential of Glycyrrhiza glabra roots. J. Ethnopharmacol. 2008, 116 (2), 377–380. https://doi.org/10.1016/j.jep.2007.11.037

      119. Guo A., He D., Xu H., Geng C., Zhao J. Promotion of regulatory T cell induction by immunomodulatory herbal medicine licorice and its two constituents. Scient. Rep. 2016, V. 5, P. 14046. https://doi.org/10.1038/srep14046

      120. Balaji B., Chempakam B. Pharmacokinetics prediction and drugability assessment of diphenyl-heptanoids from turmeric (Curcuma longa L). Med. Chem. 2015, 5 (2), 130–138. https://doi.org/10.2174/157340609787582873

      121. Grant K. L., Lutz R. B. Ginger. Am. J. Health-Syst. Pharm. 2000, 57 (10), 945–947. https://doi.org/10.1093/ajhp/57.10.945

      122. Hajhashemi V., Ghannadi A., Jafarabadi H. Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. Phytother. Res. 2004, 18 (3), 195–199. https://doi.org/10.1002/ptr.1390

      123. Jantan I., Ahmad W., Bukhari S. N. A. Corrigendum: Plant-derived immunomodulators:an insight on their preclinical evaluation and clinical trials. Front. Plant. Sci. 2018, V. 9, P. 1178. https://doi.org/10.3389/fpls.2018.01178

      124. Hollman P. C. H. Evidence for health benefits of plant phenols: local or systemic effects? J. Sci. Food Agric. 2001, V. 81, P. 842–852. https://doi.org/10.1002/jsfa.900

      125. Ma Y., Kosińska-Cagnazzo A., Kerr W. L., Amarowicz R., Swanson R. B., Pegg R. B. Separation and characterization of soluble esterified and glycoside-bound phenolic compounds in dry-blanched peanut skins by liquid chromatography–electrospray ionization mass spectrometry. J. Agric. Food Chem. 2014, 62 (47), 11488–11504. https://doi.org/10.1021/jf503836n

      126. Pandey K. B., Rizvi S. I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2 (5), 270–278. https://doi.org/10.4161/oxim.2.5.9498

      127. Ding S., Jiang H., Fang J. Regulation of immune function by polyphenols. J. Immunol. Res. 2018, V. 2018, P. 1264074. https://doi.org/10.1155/2018/1264074

      128. Magrone T., Kumazawa Y., Jirillo E. Polyphenol-mediated beneficial effects in healthy status and disease with special reference to immune-based mechanisms. Polyphenols in Human Health and Disease. 2014, V. 1, P. 467–479. https://doi.org/10.1016/b978-0-12-398456-2.00035-9

      129. Zhu D., Ma Y., Ding S., Jiang H., Fang J. Effects of melatonin on intestinal microbiota and oxidative stress in colitis mice. Biomed. Res. Int. 2018, V. 2018, P. 2607679. https://doi.org/10.1155/2018/2607679

      130. Tachibana H. Green tea polyphenol sensing. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2011, 87 (3), 66–80. https://doi.org/10.2183/pjab.87.66

      131. Sprangers S., de Vries T. J., Everts V. Monocyte heterogeneity: consequences for monocyte-derived immune cells. J. Immunol. Res. 2016, V. 2016, P. 1475435. https://doi.org/10.1155/2016/1475435

      132. Yang C. S., Wang X. Green tea and cancer prevention. Nutr. Cancer. 2010, 62 (7), 931–937. https://doi.org/10.1080/01635581.2010.509536

      133. Arce-Sillas A., Álvarez-Luquín D. D., Tamaya-Domínguez B., Gomez-Fuentes S., Trejo-García A., Melo-Salas M., Cárdenas G., Rodríguez-Ramírez J., Adalid-Peralta L. Regulatory T cells: molecular actions on effector cells in immune regulation. J. Immunol. Res. 2016, V. 2016, P. 1720827. https://doi.org/10.1155/2016/1720827

      134. Ranjith-Kumar C. T., Lai Y., Sarisky R. T., Cheng Kao C. Green tea catechin, epigallocatechin gallate, suppresses signaling by the dsRNA innate immune receptor RIG-I. PLoS One. 2010, 5 (9), e12878. https://doi.org/10.1371/journal.pone.0012878

      135. Gong S. Q., Sun W., Wang M., Fu Y. Y. Role of TLR4 and TCR or BCR against baicalin-induced responses in T and B cells. Int. Immunopharmacol. 2011, 11 (12), 2176–2180. https://doi.org/10.1016/j.intimp.2011.09.015

      136. Guo T. L., Chi R. P., Zhang X. L., Musgrove D. L., Weis C., Germolec D. R., White K. L. Jr. Modulation of immune response following dietary genistein exposure in F0 and F1 generations of C57BL/6 mice: evidence of thymic regulation. Food Chem. Toxicol. 2006, 44 (3), 316–325. https://doi.org/10.1016/j.fct.2005.08.001

      137. Yum M., Jung M., Cho D., Kim T. Suppression of dendritic cells’ maturation and functions by daidzein, a phytoestrogen. Toxicol. Appl. Pharmacol. 2011, 257 (2), 174–181. https://doi.org/10.1016/j.taap.2011.09.002

      138. Kim M., Kim H., Park H., Kim D., Chung H., Lee J. Baicalin from Scutellaria baicalensis impairs Th1 polarization through inhibition of dendritic cell maturation. J. Pharmacol. Sci. 2013, 121 (2), 148–156. https://doi.org/  10.1254/jphs.12200FP

      139. Yoshimura M., Akiyama H., Kondo K., Sakata K., Matsuoka H., Amakura Y., Teshima R., Yoshida T. Immunological effects of oenothein B, an ellagitannin dimer, on dendritic cells. Int. J. Mol. Sci. 2012, 14 (1), 46–56. https://doi.org/10.3390/ijms14010046

      140. Ramstead A., Schepetkin I., Quinn M., Jutila M. Oenothein B, a cyclic dimeric ellagitannin isolated from Epilobium angustifolium, enhances IFNγ production by lymphocytes. PloS One. 2012, 7 (11), e50546. https://doi.org/10.1371/journal.pone.0050546

      141. Ramstead A., Schepetkin I., Todd K., Loeffelholz J., Berardinelli J., Quinn M., Jutila M. Aging influences the response of T cells to stimulation by the ellagitannin, oenothein B. Int Immunopharmacol. 2015, 26 (2), 367–377. https://doi.org/10.1016/j.intimp.2015.04.008

      142. Abd-Alla H., Moharram F., Gaara A., El-Safty M. Phytoconstituents of Jatropha curcas L. leaves and their immunomodulatory activity on humoral and cell-mediated immune response in chicks. Z. Naturforsch C. 2009, 64 (7–8), 495–501. https://doi.org/10.1515/znc-2009-7-805

      143. Kumazawa Y., Takimoto H., Matsumoto T., Kawaguchi K. Potential use of dietary natural products, especially polyphenols, for improving type-1 allergic symptoms. Curr. Pharm. Des. 2014, 20 (6), 857–863. https://doi.org/10.2174/138161282006140220120344

      144. Magrone T., Tafaro A., Jirillo F., Amati L., Jirillo E., Covelli V. Elicitation of immune responsiveness against antigenic challenge in age-related diseases: effects of red wine polyphenols. Curr. Pharm. Des. 2008, 14 (26), 2749–2757. https://doi.org/10.2174/138161208786264043

      145. Yin Y., Sun Y., Gu L., Zheng W., Gong F., Wu X., Shen Y., Xu Q. Jaceosidin inhibits contact hypersensitivity in mice via down-regulating IFN-γ/STAT1/T-bet signaling in T cells. Eur. J. Pharmacol. 2011, 651 (1–3), 205–211. https://doi.org/10.1016/j.ejphar.2010.10.068

      146. Sun Y., Wu X., Yin Y., Gong F., Shen Y., Cai T., Zhou X., Wu X., Xu Q. Novel immunomodulatory properties of cirsilineol through selective inhibition of IFN-gamma signaling in a murine model of inflammatory bowel disease. Biochem. Pharmacol. 2010, 79 (2), 229–238. https://doi.org/10.1016/j.bcp.2009.08.014

      147. Xiao J., Zhai H., Yao Y., Wang C., Jiang W., Zhang C., Simard A., Zhang R., Hao J. Chrysin attenuates experimental autoimmune neuritis by suppressing immuno-inflammatory responses. Neuroscience. 2014, V. 262, P. 156–164. https://doi.org/10.1016/j.neuroscience.2014.01.004

      148. Zhang X., Wang G., Gurley E., Zhou H. Flavonoid apigenin inhibits lipopolysaccharideinduced inflammatory response through multiple mechanisms in macrophages. PloS One. 2014, 9 (9), e107072. https://doi.org/10.1371/journal.pone.0107072

      149. Liu Z., Zhong J., Gao E., Yang H. Effects of glycyrrhizin acid and licorice flavonoids on LPS-induced cytokines expression in macrophage. Zhongguo Zhong Yao Za Zhi. 2014, 39 (19), 3841–3845.

      150. Cho Y., You S., Kim H., Cho C., Lee I., Kang B. Xanthohumol inhibits IL-12 production and reduces chronic allergic contact dermatitis. Int. Immunopharmacol. 2010, 10 (5), 556–561. https://doi.org/10.1016/j.intimp.2010.02.002

      151. Yasui M., Matsushima M., Omura A., Mori K., Ogasawara N., Kodera Y., Shiga M., Ito K., Kojima S., Kawabe T. The suppressive effect of quercetin on toll-like receptor 7-mediated activation in alveolar macrophages. Pharmacology. 2015, 96 (5–6), 201–209. https://doi.org/10.1159/000438993

      152. Wong C., Nguyen L., Noh S., Bray T., Bruno R., Ho E. Induction of regulatory T cells by green tea polyphenol EGCG. Immunol Lett. 2011, 139 (1–2), 7–13. https://doi.org/10.1016/j. imlet.2011.04.009

      153. Mossalayi M., Rambert J., Renouf E., Micouleau M., Mérillon J. Grape polyphenols and propolis mixture inhibits inflammatory mediator release from human leukocytes and reduces clinical scores in experimental arthritis. Phytomedicine. 2014, 21 (3), 290–297. https://doi.org/10.1016/j.phymed.2013.08.015

      154. Saroni Arwa P., Zeraik M. L., Ximenes V. F., da Fonseca L. M., Bolzani Vda S., Siqueira Silva D. H. Redox-active biflavonoids from Garcinia brasiliensis as inhibitors of neutrophil oxidative burst and human erythrocyte membrane damage. J. Ethnopharmacol. 2015, V. 174, P. 410–418. https://doi.org/10.1016/j.jep.2015.08.041

      155. Chang M. C., Chang H. H., Wang T. M., Chan C. P., Lin B. R., Yeung S. Y., Yeh C. Y., Cheng R. H., Jeng J. H. Antiplatelet effect of catechol is related to inhibition of cyclooxygenase, reactive oxygen species, ERK/p38 signaling and thromboxane A2 production. PLoS One. 2014, 9 (8), e104310. https://doi.org/10.1371/journal.pone.0104310

      156. Hopkins A. L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4 (11), 682–690. https://doi.org/10.1038/nchembio.118

      157. Boezio B., Audouze K., Ducrot P., Taboureau O. Network-based Approaches in Pharmacology. Mol. Inform. 2017, 36 (10). https://doi.org/10.1002/minf.201700048

      158. Zang W. J. Network pharmacology: A further description. Network Pharmacology. 2016, 1 (1), 1–14.

      159. Zhang G., Li Q., Chen Q., Su S. Network pharmacology: a new approach for chinese herbal medicine research. Evid. Based Complement. Alternat. Med. 2013, V. 2013, P. 621423. https://doi.org/10.1155/2013/621423

      160. Di S., Han L., Wang Q., Liu X., Yang Y., Li F., ZhaoL., Tong X. A network pharmacology approach to uncover the mechanisms of Shen-Qi-Di-Huang decoction against diabetic nephropathy. Evid. Based Complement. Alternat. Med. 2018, V. 2018, P. 7043402. https://doi.org/10.1155/2018/7043402

      161. Van Vuuren S., Viljoen A. Plant-based antimicrobial studies--methods and approaches to study the interaction between natural products. Planta. Med. 2011, 77 (11), 1168–1182. https://doi.org/10.1055/s-0030-1250736

      162. Spinella M. The importance of pharmacological synergy in psychoactive herbal medicines. Altern. Med. Rev. 2002, 7 (2), 130–137. https://doi.org/10.1006/ebeh.2002.0328

      163. Williamson E. M. Synergy and other interactions in phytomedicines. Phytomedicine. 2001, 8 (5), 401–409. https://doi.org/10.1078/0944-7113-00060

      164. Efferth T., Koch E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr. Drug. Targets. 2011, 12 (1), 122–132. https://doi.org/10.2174/138945011793591626

      165. Malongane F., McGaw L. J., Mudau F. N. The synergistic potential of various teas, herbs and therapeutic drugs in health improvement: a review. J. Sci. Food Agric. 2017, 97 (14), 4679–4689. https://doi.org/10.1002/jsfa.8472

      166. Bahmani M., Taherikalani M., Khaksarian M., Rafieian-Kopaei M., Ashrafi B., Nazer M., Soroush S., Abbasi N., Rashidipour M. The synergistic effect of hydroalcoholic extracts of Origanum vulgare, Hypericum perforatum and their active components carvacrol and hypericin against Staphylococcus aureus. Future Sci. OA. 2019, 5 (3), FSO371. https://doi.org/10.4155/fsoa-2018-0096

      167. Gadisa E., Weldearegay G., Desta K., Tsegaye G., Hailu S., Jote K., Takele A. Combined antibacterial effect of essential oils from three most commonly used Ethiopian traditional medicinal plants on multidrug resistant bacteria. BMC Complement. Altern. Med. 2019, 19 (1), 24. https://doi.org/10.1186/s12906-019-2429-4

      168. Su S., Hua Y., Wang Y., Gu W., Zhou W., Duan J. A., Jiang H., Chen T., Tang Y. Evaluation of the anti-inflammatory and analgesic properties of individual and combined extracts from Commiphora myrrha, and Boswellia carterii. J. Ethnopharmacol. 2012, 139 (2), 649–656. https://doi.org/10.1016/j.jep.2011.12.013

      169. Gonulalan E. M., Nemutlu E., Demirezer L. O. A new perspective on evaluation of medicinal plant biological activities: The correlation between phytomics and matrix metalloproteinases activities of some medicinal plants. Saudi Pharm. J. 2019, 27 (3), 446–452. https://doi.org/10.1016/j.jsps.2019.01.006

      170. Gonulalan E. M., Nemutlu E., Bayazeid O., Koçak E., Yalçın F. N., Demirezer L. O. Metabolomics and proteomics profiles of some medicinal plants and correlation with BDNF activity. Phytomedicine. 2019, 152920. https://doi.org/10.1016/j.phymed.2019.152920

      171. Yang Y., Zhang Z., Li S., Ye X., Li X., He K. Synergy effects of herb extracts: pharmacokinetics and pharmacodynamic basis. Fitoterapia. 2014, V. 92, P. 133–147. https://doi.org/10.1016/j.fitote.2013.10.010