Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2019 № 5 PRODUCTION OF MAGNETICALLY CONTROLLED BIOSORBENTS BASED ON FUNGI Agaricus bisporus AND Lentinula edodes S. V. Gorobets , L. A. Yevzhyk, I. A. Kovalchuk, O. V. Kovalev
Print PDF

ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)

Biotechnologia Acta, V. 12, No.5, 2019
https://doi.org/10.15407/biotech12.05.063
P. 63-71, Bibliography. 60, English.
УUniversal Decimal ClassificationДК: 577.1/3

PRODUCTION OF MAGNETICALLY CONTROLLED BIOSORBENTS BASED ON FUNGI Agaricus bisporus AND Lentinula edodes

S. V. Gorobets1 , L. A. Yevzhyk1, I. A. Kovalchuk1, O. V. Kovalev2

1Igor Sikorsky National Polytechnic Institute, Kyiv
2KP “UGCG”, Slavutich

The aim of the study was to produce magnetically controlled biosorbent based on fungi of champignon and shiitake, to determine the proportion of the magnetically controlled phase of the biomass of fungi when the magnetic fluid (MF) was added to the substrate and to explore the efficiency of extraction Fe3+ ions by shredded biomass of the fungus. The object of the study was mushrooms champignon Agaricus bisporus and shiitake Lentinula edodes grown in the laboratory. An effective and cheap way to remove waste biosorbent from the working environment is a high-gradient magnetic separation (HGMS), which takes place in high-speed mode. The separation of the magnetically controlled phase of fungi biomass A. bisporus and L. edodes was carried out by HGMS methods. It was investigated that when using the biomass of champignon grown on MF, the properties of the sorbent were significantly improved, the full saturation was 6 times faster in comparison with the biosorbent based on the biomass of the fungus grown without MF.

Key words: biogenic magnetic nanoparticles, magnetite, magnetically controlled biosorbent, champignon Agaricus bisporus, shiitake Lentinula edodes.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2019

  • Refernces
    • 1. Blakemore R. P. Magnetotactic bacteria. Science. 1975, N 190, P. 377–379.

      2. Frankel R. B., Blakmore R. P., Wolfe R. S. Magnetite in freshwater magnetotactic bacteria. Science. 1979, N 203, P. 1355–1356.

      3. Sakaguchi Т., Burgess J. G., Matsunaga T. Magnetite formation by a sulphate-redusing bacterium. Nature. 1993, N 365, P. 47–49. https://doi.org/10.1038/365047a0

      4. Mann S., Sparks N., Frankel R. B., Bzilinski D. A., Jannasch Y. W. Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature. 1990, N 343, P. 258–261. https://doi.org/10.1038/343258a0

      5. Hsu Ch.-Y., Ko F.-Y., Li Ch.-W. Magnetoreception System in Honeybees (Apis mellifera). PLoS ONE. 2007, N 4, P. 1–11. https://doi.org/10.1371/journal.pone.0000395

      6. Maher B. A. Magnetite biomineralization in termites. Proceedings of the Royal Society. 1998, N 265, P. 733–737. https://doi.org/10.1098/rspb.1998.0354

      7. Cranfield C. G., Dawe A., Karloukovski V. Biogenic Magnetite in the Nematode Caenorhabditis elegans. Biological Sciences. 2004, N 271, P. 436–439. https://doi.org/10.1098/rsbl.2004.0209

      8. Mann S., Sparks N. H. C., Walker M. M., Kirschvink J. L. J. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon. Exp. Biol. 1988, N 140, P. 35–49.

      9. Lowenstam H. A. Magnetite in denticle capping in recent chitons. Geol. Soc. 1973, 11 (2), 435–438. https://doi.org/10.1130/0016-7606(1962)73[435:MIDCIR]2.0.CO;2

      10. Walcott C., Gould J. L., Kirschvink J. L. Pigeons have magnets. Science. 1979, N 184, P. 180–182.

      11. Vainshtein M., Suzina N., Kudryashova E., Ariskina E. New magnet-sensitive structures in bacterial and archaeal cells. Biology of the Cell. 2002, N 9, P. 29–35. https://doi.org/10.1016/S0248-4900(02)01179-6

      12. De Barros L. Cienciae Congervacaona Serrados Orgaos. Anais da Academia Brasileira de Ciências. 1981, N 54, P. 258.

      13. Suzuki Y., Kopp R., Kogure T. Sclerite Formation in the Hydrothermal Vent «Scaly-Foot» Gastropod-Possible Control of Iron Sulfide Biomineralization by the Animal. Earth and Planetary Science Letters. 2006, N 242, P. 39–50.

      14. De Oliveira J. F. Wajnberg E., de Souza Esquivel D. M. Ant Antennae: are they sites for magnetoreception. J. Royal Soc. Interface. 2010, N 7, P. 143–152. https://doi.org/10.1098/rsif.2009.0102

      15. Gould J. L., Kirschvink J. L., Deffeyes K. S. Bees Have Magnetic Remanence. Science. 1978, N 202, P. 1026–1028. https://doi.org/10.1126/science.201.4360.1026

      16. Acosta-Avalos D., Wajnberg Е., Oliveira P. S. Isolation of Маgnetic Nanoparticles from Pachycondyla Marginata Ants. J. Exp. Bio. 1999, N 202, P. 2687–2692.

      17. Lohmann K. J. Magnetic Remanence in the Western Atlantic Spiny Lobster, Panulirus Argus. J. Exp. Bio. 1984, N 113, P. 29–41.

      18. Brassart J., Kirschvink J. L., Phillips J. B., Borland S. C. Ferromagnetic Material in the Eastern Red-Spotted New Notophthalmus Viridescens. J. Exp. Bio. 1999, 202 (22), 3155–3160.

      19. Kirschvink J. L. Magnetite Biomineralization and Geomagnetic Sensitivity in Higher Animals: an update and recommendations for future study. Bioelectromagnetics. 1989, 10 (3), 239–259. https://doi.org/10.1002/bem.2250100304

      20. Diebel C. E., Proksch R., Greenk C. R. Magnetite Denes a Vertebrate Magnetoreceptor. Nature. 2000, N 406, P. 299–302. https://doi.org/10.1038/35018561

      21. Eder S. H. K., Cadiou H., Muhamad A. Magnetic Characterization of Isolated Candidate Vertebrate Magnetoreceptor Cell. PNAS. 2012, 109 (30), 12022–12027. https://doi.org/10.1073/pnas.1205653109

      22. Moore A. Freake S. M., Thomas I. M. Magnetic Particles in the Lateral Line of the Atlantic Salmon. Biol. Sci. 1990, N 329, P. 11–15. https://doi.org/10.1098/rstb.1990.0145

      23. Moore A., Riley W. D. Magnetic Particles Associated with the Lateral Line of the European Eel (Anguilla anguilla). Journal of Fish Biology. 2009, N 74, P. 1629–1634. https://doi.org/10.1111/j.1095-8649.2009.02197.x

      24. Ogura M., Kato M., Ara N. Magnetic Particles in Chum Salmon (Oncorhynchus keta): extraction and transmission electron microscopy. Canad. J. Zool. 1992, N 70, P. 874–877. https://doi.org/10.1139/z92-124

      25. Irwin W. P., Lohmann K. J. Disruption of Magnetic Orientation in Hatchling Loggerhead Sea Turtles by Pulsed Magnetic Fields. J. Compar. Physiol., Neuroethology, Sensory, Neur. Behav. Physiol. 2005, 191 (5), 475–480. https://doi.org/10.1007/s00359-005-0609-9

      26. Falkenberg G., Fleissner G., Schuchardt K. Avian Magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS ONE. 2010, 5 (2), 9231. https://doi.org/10.1371/journal.pone.0009231

      27. Cadiou H., McNaughton P. A. Avian Magnetite-Based Magnetoreception: a Physiologist's Perspective. J. Royal Soc. Interface. 2010, N 7, P. 193–205. https://doi.org/10.1098/rsif.2009.0423.focus

      28. Edwards H. H., Schnell G. D., Dubois R. L., Hutchison V. H. Natural and Induced Remanent Magnetism in Birds. The Auk. 1992, 109 (1), 43–56. https://doi.org/10.2307/4088265

      29. Edelman N. B., Fritz T., Nimp S. No Evidence for Intracellular Magnetite in Putative Vertebrate Magnetoreceptors Identified by Magnetic Screening. PNAS. 2015, 112 (1), 262–267. https://doi.org/10.1073/pnas.1407915112

      30. Holland R. A., Kirschvink J. L., Doak T. G., Wikelski M. Use Magnetite to Detect the Earth’s Magnetic Field. PLoS ONE. 2008, 3 (2), 1676. https://doi.org/10.1371/journal.pone.0001676

      31. Zoeger J., Dunn J. R., Fuller M. Magnetic Material in the Head of the Common Pacific Dolphin. Ibid. 1981, 213 (4510), 892–894.

      32. Gorobets S. V., Gorobets O. Yu., Medviediev O. V., Golub V. O., Kuzminykh L. V. Biogenic magnetic nanoparticles in lung, heart and liver. Functional Materials. 2017, 24 (3), 405–408.

      33. Brem F., Hirt A. M., Winklhofer М. Magnetic Iron Compounds in the Human Brain: a comparison of tumor and hippocampal tissue. J. Royal Soc. Interface. 2006, N 3, P. 833–841. https://doi.org/10.1098/rsif.2006.0133

      34. Kirschvink J. L. Ferromagnetic Crystals in Human Tissue. J. Exp. Biology. 1981, N 92, P. 333–335.

      35. Gorobets S., Medviediev O., Gorobets O., Ivanchenko A. Biogenic magnetic nanoparticles in human organs and tissues. Progress in Biophysics and Molecular Biology. 2018, N 135, P. 49–57. https://doi.org/10.1016/j.pbiomolbio.2018.01.010

      36. Gorobets S., Gorobets O., Magerman A. V., Sharay I. V. Biogenic magnetic nanoparticles in plants. Funct. Mater. 2014, 21 (4), 427–436.

      37. Gorobets S., Gorobets O., Duduk A., Bulaievska M., Sharay I. Comparative characteristics of biogenic magnetic nanoparticles in plant, fungi and animal organisms. IEEE AIM. La Thuile, Italy, 4–7 February 2018b.

      38. Gorobets O. Yu., Gorobets S. V., Sorokina L. V. Biomineralization and Synthesis of Biogenic Magnetic Nanoparticles and Magnetosensitive Inclusions in Microorganisms and Fungi. Functional Materials. 2014, 21 (4), 427–436. https://doi.org/10.15407/fm21.04.427

      39. Gorobets S. V., Gorobets O. Yu., Kovalchuk I. A., Yevzhyk L. A. Identification of producers of biogenic magnetic nanoparticles among representatives of fungi of Ascomycota and Basidiomycota departments. Innov Biosyst. Bioeng. 2018, 2 (4), 232–246. (In Ukrainian). https://doi.org/10.20535/ibb.2018.2.4.147310

      40. Gorobets S. V., Gorobets O. Yu., Gorobets Yu. I. Biomineralization of intracellular biogenic magnetic nanoparticles and their possible functions. Scientific news of NTUU «KPI». 2013, N 3, P. 28–33. (In Ukrainian).

      41. Gorobets O. Yu., Gorobets S. V., Gorobets Yu. I. Biogenic magnetic nanoparticles: Biomineralization in prokaryotes and eukaryotes. Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition. CRC Press: New York. 2014, 300‒308.

      42. Gorobets O., Gorobets S., Koralewski M. Physiological origin of biogenic magnetic nanoparticles in health and disease: from bacteria to humans. Int. J. Nanomed. 2017, N 12, P. 4371‒4395. https://doi.org/10.2147/IJN.S130565

      43. Markova M. E., Uryash V. F., Stepanova E. A., Gruzdeva A. E., Grishatova N. V., Demarin V. T., Tumanova A. N. Sorption of heavy metals by higher fungi and chitin of different origin in in vitro experiments. Bull. Nizhny Novgorod University. 2008, N 6, P. 118‒124. (In Russian).

      44. Stihi C., Radulescu C., Busuioc G., Popescu I. V., Gheboianu A., Ene A. Studies on accumulation of heavy metals from substrate to edible wild mushrooms. Rom. Journ. Phys. 2011, 56 (1–2), 257–264.

      45. Abdul-Talib S., Tay C. C., Abdullah-Suhaimi A., Liew H. H. Fungal Pleurotus Ostreatus Biosorbent for Cadmium (II) Removal in Industrial Wastewater. J. of Life Sci. Technol. 2013, 1 (1). https://doi.org/10.12720/jolst.1.1.65-68

      46. Wang C., Liu H., Liu Z., Gao Y., Wu B., Xu H. Fe3O4 nanoparticle-coated mushroom source biomaterial for Cr(VI) polluted liquid treatment and mechanism research. R. Soc. Open. Sci. 2018, 5 (5). https://doi.org/10.1098/rsos.171776

      47. Dhawale S. S., Lane A. C., Dhawale S. W. Effects of mercury on the white rot fungus Phanerochaete chrysosporium. Bull. Environ. Contam. Toxicol. 1996, N 56, P. 825–832. https://doi.org/10.1007/s001289900120

      48. Gabriel J., Kofronova O., Rychlovsky P., Krenzelok M. Accumulation and effect of cadmium in the wood-rotting basidiomycete Daedalea quercina. Bull. Environ. Contam. Toxicol. 1996, N 57, P. 383–390. https://doi.org/10.1007/s001289900202

      49. Melgar M. J., Alonso J., Perez-Lopez M., Garcia M. A. Influence of some factors in toxicity and accumulation of cadmium from edible wild macrofungi in NW Spain. J. Environ. Sci. Health B. 1998, N 33, P. 439–455. https://doi.org/10.1080/03601239809373156

      50. Cihangir N., Saglam N. Removal of cadmium by Pleurotus sajor-caju basidiomycetes. Acta Biotechnol. 1999, N 19, P. 171–177. https://doi.org/10.1002/abio.370190212

      51. Tobin M., White C., Gadd G. M. Metal accumulation by fungi: applications in environmental biotechnology. J. Industr. Microbiol. 1994, N 13, P. 126–130. https://doi.org/10.1007/BF01584110

      52. Shazia I. Sumera A. Biosorption of Copper and Lead by Heavy Metal Resistant Fungal. Int. J. Sci. Res. Publ. 2015, N 5, P. 1–5.

      53. Gulich M. P., Antomonov M. Yu., Yemchenko N. L. Sorption biometal mushroom mycelium from a nutrient medium enriched in citrate. Trace elements in medicine. 2014, 15 (2), 9–17. (In Ukrainian).

      54. Gorobets S. V., Mikhailenko N. A. High-gradient ferromagnetic matrices for purificationof  wastewaters by the method of magnitoelectrolysis. J. Wat. Chem. Technol. 2014, 36 (4), 153–159. https://doi.org/10.3103/S1063455X14040018

      55. Morozov A. Y. The cultivation of mushrooms. AST "Stalker", 2001, 48 p. (In Ukrainian).

      56. Garibova L. The cultivation of mushrooms. Publisher: Veche. 2005. (In Ukrainian).

      57. Ahmeda I. A. M., Maherb B. A. Identification and paleoclimatic significance of magnetite nanoparticles in soils. PNAS. 2018, 115 (8). https://doi.org/10.1073/pnas.1719186115

      58. Lascu I., Banerjee S. K., Berquó T. S. Quantifying the concentration of ferrimagnetic particles in sediments using rock magnetic methods. G3. 2011, 11 (8). https://doi.org/10.1029/2010GC003182

      59. Vasiliev A. A., Chashchin A. N., Lobanova E. S., Razinsky M. V. Non-Stoichiometric magnetite in soils of urbanized territories of Perm Krai. The Perm agrarian journal. 2014, 2 (6). (In Ukrainian).

      60. Gorobets S. V. Method for producing of dry magnetically operated biosorbent. Patent of Ukraine № 118673, 2017. (In Ukrainian).


 

Additional menu

Site search

Site navigation

Home Archive 2019 № 5 PRODUCTION OF MAGNETICALLY CONTROLLED BIOSORBENTS BASED ON FUNGI Agaricus bisporus AND Lentinula edodes S. V. Gorobets , L. A. Yevzhyk, I. A. Kovalchuk, O. V. Kovalev

Invitation to cooperation

Dear colleagues, we invite you to publish your articles in our journal.
© Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, 2008.
All rights are reserved. Complete or partial reprint of the journal is possible only with the written permission of the publisher.
E-mail
for information: biotech@biochem.kiev.ua.