ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)
"Biotechnologia Acta" V. 12, No 3, 2019
https://doi.org/10.15407/biotech12.03.041
Р. 41-49, Bibliography 51, English
Universal Decimal Classification: 577.2:616
ANTIAMYLOIDOGENIC EFFECT OF MiR-101 IN EXPERIMENTAL ALZHEIMER’S DISEASE
V. Sokolik1, O. Berchenko1, N. Levicheva1, S. Shulga2
1. Nikam R. R., Gore K. R. Journey of siRNA: clinical developments and targeted delivery. Nucl. Acid Ther. 2018, 28 (4), 209–224. https://doi.org/10.1089/nat.2017.0715
2. Dana H., Chalbatani G. M., Mahmoodza deh H., Karimloo R., Rezaiean O., Moradza deh A., Mehmandoost N., Moazzen F., Mazraeh A., Marmari V., Ebrahimi M., Rashno M. M., Abadi S. J., Gharagouzlo E. Molecular mechanisms and biological functions of siRNA. Int. J. Biomed. Sci. 2017, 13 (2), 48–57.
3. Yu A. M., Jian C., Yu A. H., Tu M. J. RNA therapy: Are we using the right molecules? Pharmacol. Ther. 2019, V. 196, P. 91–104.
https://doi.org/10.1016/j.pharmthera.2018.11.011
4. Panza F., Lozupone M., Logroscino G., Imbimbo B. P. A critical appraisal of amyloid- targeting therapies for Alzheimerdisease. Nat. Rev. Neurol. 2019, V. 15, P. 73–88. https://doi.org/10.1038/s41582-018-0116-6
5. Reiss A. B., Arain H. A., Stecker M. M., Siegart N. M., Kasselman L. J. Amyloid toxicity in Alzheimer’s disease. Rev. Neurosci. 2018, 29 (6), 613–627. https://doi.org/10.1515/revneuro-2017-0063
6. Wang Z. X., Tan L., Liu J., Yu J. T. The essential role of soluble A oligomers in Alzheimer’s disease. Mol. Neurobiol. 2016, V. 53, P. 1905–1924. https://doi.org/10.1007/s12035-015-9143-0
7. Herrera-Rivero M. Late-onset Alzheimer’s disease: risk factors, clinical diagnosis and the search for biomarkers. Neurodegenerative Diseases. Kishore U. (Ed.). Res. Triangle Park: InTech. 2013.
https://doi.org/10.5772/53775
8. Kunkle B. W., Grenier-Boley B., Sims R. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates A, tau, immunity and lipid processing. Nat. Genet. 2019, V. 51, P. 414–430.
9. Rogaeva E. The genetic profile of Alzheimer’s disease: updates and considerations. Geriatrics and Aging. 2008, 11 (10), 577–581.
10. Kelleher R. J., Shen J. Presenilin-1 mutations and Alzheimer’s disease. Proc. Nat. Acad. Sci. 2017, 114 (4), 629–631. https://doi.org/10.1073/pnas.1619574114
11. Cai Y., An S. S. A., Kim S. Y. Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementiaassociated disorders. Clinical Interventions in Aging. 2015, V. 10, P. 1163–1172. https://doi.org/10.2147/CIA.S85808
12. Safieh M., Korczyn A. D., Michaelson D. M. ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Medicine. 2019, V. 17, P. 64. https://doi.org/10.1186/s12916-019-1299-4
13. Lim Y. Y., Mormino E. C. APOE genotype and early -amyloid accumulation in older adults without dementia. Neurology. 2017, V. 89, P. 1028–1034. https://doi.org/10.1212/WNL.0000000000004336
14. Verheijen J., Sleegers K. Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends Genet. 2018, 34 (6), 434–447. https://doi.org/10.1016/j.tig.2018.02.007
15. Chen X., Mangala L. S., Rodriguez-Aguayo C., Kong X., Lopez-Berestein G., Sood A. K. RNA interference-based therapy and its delivery systems. Canser Metastasis Rev. 2018, 31 (1), 107–124. https://doi.org/10.1007/s10555-017-9717-6
16. Setten R. L., Rossi J. J., Han S. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 2019. Online.
https://doi.org/10.1038/s41573-019-0023-6
17. Filipowicz W., Bhattacharyya S. N., Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 2008, V. 9, P. 102–114. https://doi.org/10.1038/nrg2290
18. Pepin G., Gantier M. P. MicroRNA decay:refining microRNA regulatory activity. MicroRNA. 2016, 5 (3), 167–174.
https://doi.org/10.2174/2211536605666161027165915
19. Tafrihi M., Hasheminasab E. MiRNas: biology, biogenesis, their Web-based tools, and Databases. MicroRNA. 2019, 8 (1), 4–27. https://doi.org/10.2174/2211536607666180827111633
20. Eiring A. M., Harb J. G., Neviani P., Garton C., Oaks J. J., Spizzo R., Liu S., Schwind S., Santhanam R., Hickey C. J., Becker H., Chandler J. C., Andino R., Cortes J., Hokland P., Huettner C. S., Bhatia R., Roy D. C., Liebhaber S. A., Caligiuri M. A., Marcucci G., Garzon R., Croce C. M., Calin G. A., Perrotti D. MiR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010, 140 (5), 652–665. https://doi.org/10.1016/j.cell.2010.01.007
21. Vasudevan S., Tong Y., Steitz J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007, V. 318, P. 1931–1934. https://doi.org/10.1126/science.1149460
22. Zhao J., Yue D., Zhou Y., Jia L., Wang H., Guo M., Xu H., Chen Ch., Zhang J., Xu L. The role of MicroRNAs in A deposition and tau phosphorylation in Alzheimer’s disease. Front. Neurol. 2017, V. 8, P. 342. https://doi.org/10.3389/fneur.2017.00342
23. Wang R., Wang H. B., Hao C. J., Cui Y., Han X. C. MiR-101is involved in Human breast carcinogenesis by targeting. Stathmin1. Plos One. 2012, 7 (10), e46173. https://doi.org/10.1371/journal.pone.0086319
24. Kim J. H., Lee K. S., Lee D. K., Kim J., Kwak S. N., Ha K. S., Choe J., Won M. H., Cho B. R., Jeoung D., Lee H., Kwon Y. G., Kim Y. M. Hypoxia-responsive microRNA-101 promotes angiogenesis via heme oxygenase-1/vascular endothelial growth factor axis by targeting cullin 3. Antiox. Redox. Signal. 2014, 21 (18), 2469–2482. https://doi.org/10.1089/ars.2014.5856
25. Liu J-J., Lin X-J., Yang X-J., Zhou L., He Sh., Zhuang Sh-M., Yang J. A novel AP-1/miR-101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells. Nucl. Acids Res. 2014, 42 (19), 12041–12051. https://doi.org/10.1093/nar/gku872
26. Lippi G., Fernandes C. C., Ewell L. A., John D., Romoli B., Curia G., Taylor S. R., Frady E. P., Jensen A. B., Liu J. C., Chaabane M. M., Belal C., Nathanson J. L., Zoli M., Leutgeb J. K., Biagini G., Yeo G. W., Berg D. K. MicroRNA-101 regulates multiple developmental programs to constrain excitation in adult neural networks. Neuron. 2016, 92 (6), 1337–1351. https://doi.org/10.1016/j.neuron.2016.11.017
27. Amakiri N., Kubosumi A., Tran J., Reddy P. H. Amyloid beta and MicroRNAs in Alzheimer’s disease. Front. Neurosci. 2019, V. 13, P. 430. https://doi.org/10.3389/fnins.2019.00430
28. Vilardo E., Barbato C., Ciotti M., Cogoni C., Ruberti F. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J. Biol. Chem. 2010, V. 285, P. 18344–18351. https://doi.org/10.1074/jbc.M110.112664
29. Alasmari F., Alshammari M. A., Alasmari A. F., Alanazi W. A., Alhazzani Kh. Neuroinflammatory cytokines induce Amyloid beta neurotoxicity through modulating Amyloid Precursor Protein levels/metabolism. BioMed Res. Intern. V. 2018, Article ID 3087475. https://doi.org/10.1155/2018/3087475
30. Domingues C., da Cruz E., Silva O. A. B., Henriques A. G. Impact of cytokines and chemokines on Alzheimer’s disease neuropathological hallmarks. Curr. Alzheimer. Res. 2017, 14 (8), 870–882. https://doi.org/10.2174/1567205014666170317113606
31. Zheng C., Zhou X. W., Wang J. Z. The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-, TGF- and IFN-. Transl. Neurodegener. 2016, V. 5, P. 7. https://doi.org/10.1186/s40035-016-0054-4
32. Sokolik V. V., Berchenko O. G., Shulga S. M. Comparative analysis of nasal therapy with soluble and liposomal forms of curcumin on rats with Alzheimer’s disease model. J. Alzheimers Dis. Parkinsonism. 2017, V. 7, P. 357.https://doi.org/10.4172/2161-0460.1000357
33. Sokolik V. V., Shulga S. M. Curcumin influence on the background of intrahippocampus administration of -amyloid peptide in rats. Biotechnol. acta. 2015, 8 (3), 78–88. https://doi.org/10.15407/biotech8.03.078
34. Goure W. F., Krafft G. A., Jerecic J., Hefti F. Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res. Ther. 2015, V. 6, P. 42. https://doi.org/10.1186/alzrt272
35. Sakono M., Zako T. Amyloid oligomers: formation and toxicity of A oligomers. FEBS J. 2010, V. 277, P. 1348–1358. https://doi.org/10.1111/j.1742-4658.2010.07568.x
36. Sokolik V. V., Maltsev A. V. Cytokines neuroinflammatory reaction to -amyloid 1-40 action in homoaggregatic and liposomal forms in rats. Biomed. Chem. 2015, 9 (4), 220–225. https://doi.org/10.1134/S1990750815040058
37. Sokolik V. V., Shulga S. M. Effect of curcumin liposomal form on angiotensin converting activity, cytokines and cognitive characteristics of the rats with Alzheimer’s disease model. Biotechnol. acta. 2015, 8 (6), 48–55. https://doi.org/10.15407/biotech8.06.048
38. Hampel H., Shen Y., Walsh D. M., Aisen P., Shaw L. M., Zetterberg H., Trojanowski J. Q., Blennow K. Biological markers of amyloid beta-related mechanisms in Alzheimer’s disease. Exp. Neurol. 2010, 223 (2), 334–346. https://doi.org/10.1016/j.expneurol.2009.09.024
39. Gu L., Guo Z. Alzheimer’s A42 and A40 peptides form interlaced amyloid fibrils. J. Neurochem. 2013, 126 (3), 305–311. https://doi.org/10.1111/jnc.12202
40. Bures J., Petran M., Zachar J. Electrophysiological methods in biological research, Ed. 2 Publishing House. 1960, 516 p.
41. Shulga S. M. Obtaining and characteristic of curcumin liposomal form. Biotechnol. acta. 2014, V. 7, P. 55–61. https://doi.org/10.15407/biotech7.05.055
42. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951, V. 193, P. 265–275.
43. Hébert S. S., Horré K., Nicolaï L., Papadopoulou A. S., Mandemakers W., Silahtaroglu A. N., Kauppinen S., Delacourte A., De Strooper B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc. Natl. Acad. Sci. U. S. A. 2008, V. 105, P. 6415–6420. https://doi.org/10.1073/pnas.0710263105
44. Nunez-Iglesias J., Liu C. C., Morgan T. E., Finch C. E., Zhou X. J. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One. 2010, 5 (2), e8898. https://doi.org/10.1371/journal.pone.0008898
45. Zhao Q., Luo L., Wang X., Li X. Relationship between single nucleotide polymorphisms in the 3UTR of amyloid precursor protein and risk of Alzheimer’s disease and its mechanism. Biosci. Rep. 2019, V. 39, P. 5. https://doi.org/10.1042/BSR20182485
46. Vilardo E., Barbato C., Ciotti M., Cogoni C., Ruberti F. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J. Biol. Chem. 2010, V. 285, P. 18344–18351. https://doi.org/10.1074/jbc.M110.112664
47. Long J. M., Lahiri D. K. MicroRNA-101 downregulates Alzheimer’s amyloid- precursor protein levels in human cell cultures and is differentially expressed. Biochem. Biophys. Res. Commun. 2011, 404 (4), 889–895. https://doi.org/10.1016/j.bbrc.2010.12.053
48. Wojdasiewicz P., Poniatowski Ł. A., Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014, V. 2014, P. 561459. https://doi.org/10.1155/2014/561459
49. Wang C. C., Yuan J. R., Wang C. F.,Yang N., Chen J., Liu D., Song J., Feng L., Tan X. B., Jia X. B.Anti-inflammatoryeffects of Phyllanthus emblica L on benzopyreneinduced precancerous lung lesion by regulating the IL-1/miR-101/Lin28B signaling pathway. Integr. Cancer Ther. 2016, 16 (4), 505–515.https://doi.org/10.1177/1534735416659358
50. Saika R., Sakuma H., Noto D., Yamaguchi S., Yamamura T., Miyake S. MicroRNA-101a regulates microglial morphology and inflammation. J. Neuroinf. l017, 14 (1), 109. https://doi.org/10.1186/s12974-017-0884-8
51. Gao Y., Liu F., Fang L., Cai R, Zong C, Qi Y. Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in LPSactivated macrophages. PLoS One. 2014, 9 (5), e96741. https://doi.org/10.1371/journal.pone.0096741
Ж-л "Biotechnologia Acta" Т. 12, № 3, 2019
https://doi.org/10.15407/biotech
С. 41-49, библ. 51, англ.
УДК: 577.2:616
АНТИАМИЛОИДОГЕННОЕ ДЕЙСТВИЕ MіR-101 ПРИ ЭКСПЕРИМЕНТАЛЬНОЙ БОЛЕЗНИ АЛЬЦГЕЙМЕРА
В. Соколик1, О. Берченко1, Н. Левичева1, С. Шульга2
1ГУ «Институт неврологии, психиатрии и наркологии НАМН Украины», Харьков
2ГУ «Институт пищевой биотехнологии и геномики НАН Украины», Киев
< Prev | Next > |
---|