Biotechnologia Acta

...

  • Increase font size
  • Default font size
  • Decrease font size
Home Archive 2019 № 3 ANTIAMYLOIDOGENIC EFFECT OF MiR-101 IN EXPERIMENTAL ALZHEIMER’S DISEASE V. Sokolik1, O. Berchenko1, N. Levicheva1, S. Shulga
Print PDF

ISSN 2410-776X (Online)
ISSN 2410-7751 (Print)

"Biotechnologia Acta" V. 12, No 3, 2019
https://doi.org/10.15407/biotech12.03.041
Р. 41-49, Bibliography 51, English
Universal Decimal Classification: 577.2:616

ANTIAMYLOIDOGENIC EFFECT OF MiR-101 IN EXPERIMENTAL ALZHEIMER’S DISEASE

V. Sokolik1, O. Berchenko1, N. Levicheva1, S. Shulga2

1SI “Institute of Neurology, Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine”, Kharkiv
2SI “Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine”, Kyiv

The aim of the study was to determine the effect of miR-101 on the level of β-amyloid peptide and activation of the cytokine system in the brain regions of animals with an experimental model of Alzheimer’s disease. MiR-101 is the key deactivating operator of mRNA function for the amyloid-β protein precursor. Hence, miR-101 is capable to suppress its synthesis and amyloidogenic processing. Aged male rats were injected intrahippocampally with single-dose unilaterally of β-amyloid peptide 40 aggregates (15 nmol). After 10 days, nasal administration of the liposomal form of miR-101 or empty liposomes was started. After 10 days of therapy, the level of toxic endogenous form β-amyloid peptide 42 and the activity of the cytokine system were determined by the indicators of tumor necrosis factor α, interleukin-6, and interleukin-10 in neocortex, hippocampus and olfactory bulbs. It was found that in rats, aggregates of exogenous β-amyloid peptide 40 model the amyloidogenic and pro-inflammatory situation after 20 days in the neocortex and hippocampus (a significant increase in the concentrations of β-amyloid peptide 42 by 36% and cytokines by 16–18% in the neocortex, and β-amyloid peptide 42 by 27%, proinflammatory cytokines tumor necrosis factor α, interleukin-6 by 14% in the hippocampus), but not in olfactory bulbs. The ten-day course of nasal therapy of liposomal miR-101 normalized the level of β-amyloid peptide 42 and cytokines: in neocortex, the concentration of endogenous toxic β-amyloid peptide 42 decreased by 33%, in the hippocampus by 15%, and concentration of pro-inflammatory cytokines fell by 11–20%. Thus, nasal therapy of miR-101 in liposomes caused a significant anti-amyloidogenic effect in rats with the Alzheimer’s disease model, whereas its anti-inflammatory effect was primarily due to a decrease in β-amyloid peptide 42 concentration.

Key words: miR-101, β-amyloid peptide, amyloidosis, Alzheimer’s disease.

© Palladin Institute of Biochemistry of National Academy of Sciences of Ukraine, 2018
  • References
    • 1. Nikam R. R., Gore K. R. Journey of siRNA: clinical developments and targeted delivery. Nucl. Acid Ther. 2018, 28 (4), 209–224. https://doi.org/10.1089/nat.2017.0715

      2. Dana H., Chalbatani G. M., Mahmoodza deh H., Karimloo R., Rezaiean O., Moradza deh A., Mehmandoost N., Moazzen F., Mazraeh A., Marmari V., Ebrahimi M., Rashno M. M., Abadi S. J., Gharagouzlo E. Molecular mechanisms and biological functions of siRNA. Int. J. Biomed. Sci. 2017, 13 (2), 48–57.

      3. Yu A. M., Jian C., Yu A. H., Tu M. J. RNA therapy: Are we using the right molecules? Pharmacol. Ther. 2019, V. 196, P. 91–104.
      https://doi.org/10.1016/j.pharmthera.2018.11.011

      4. Panza F., Lozupone M., Logroscino G., Imbimbo B. P. A critical appraisal of amyloid- targeting therapies for Alzheimerdisease. Nat. Rev. Neurol. 2019, V. 15, P. 73–88. https://doi.org/10.1038/s41582-018-0116-6

      5. Reiss A. B., Arain H. A., Stecker M. M., Siegart N. M., Kasselman L. J. Amyloid toxicity in Alzheimer’s disease. Rev. Neurosci. 2018, 29 (6), 613627. https://doi.org/10.1515/revneuro-2017-0063

      6. Wang Z. X., Tan L., Liu J., Yu J. T. The essential role of soluble A oligomers in Alzheimer’s disease. Mol. Neurobiol. 2016, V. 53, P. 1905–1924. https://doi.org/10.1007/s12035-015-9143-0

      7. Herrera-Rivero M. Late-onset Alzheimer’s disease: risk factors, clinical diagnosis and the search for biomarkers. Neurodegenerative Diseases. Kishore U. (Ed.). Res. Triangle Park: InTech. 2013.
      https://doi.org/10.5772/53775

      8. Kunkle B. W., Grenier-Boley B., Sims R. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates A, tau, immunity and lipid processing. Nat. Genet. 2019, V. 51, P. 414–430.

      9. Rogaeva E. The genetic profile of Alzheimer’s disease: updates and considerations. Geriatrics and Aging. 2008, 11 (10), 577–581.

      10. Kelleher R. J., Shen J. Presenilin-1 mutations and Alzheimer’s disease. Proc. Nat. Acad. Sci. 2017, 114 (4), 629–631. https://doi.org/10.1073/pnas.1619574114

      11. Cai Y., An S. S. A., Kim S. Y. Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementiaassociated disorders. Clinical Interventions in Aging. 2015, V. 10, P. 1163–1172. https://doi.org/10.2147/CIA.S85808

      12. Safieh M., Korczyn A. D., Michaelson D. M. ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Medicine. 2019, V. 17, P. 64. https://doi.org/10.1186/s12916-019-1299-4

      13. Lim Y. Y., Mormino E. C. APOE genotype and early -amyloid accumulation in older adults without dementia. Neurology. 2017, V. 89, P. 1028–1034. https://doi.org/10.1212/WNL.0000000000004336

      14. Verheijen J., Sleegers K. Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends Genet. 2018, 34 (6), 434–447. https://doi.org/10.1016/j.tig.2018.02.007

      15. Chen X., Mangala L. S., Rodriguez-Aguayo C., Kong X., Lopez-Berestein G., Sood A. K. RNA interference-based therapy and its delivery systems. Canser Metastasis Rev. 2018, 31 (1), 107–124. https://doi.org/10.1007/s10555-017-9717-6

      16. Setten R. L., Rossi J. J., Han S. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 2019. Online.
      https://doi.org/10.1038/s41573-019-0023-6

      17. Filipowicz W., Bhattacharyya S. N., Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 2008, V. 9, P. 102–114. https://doi.org/10.1038/nrg2290

      18. Pepin G., Gantier M. P. MicroRNA decay:refining microRNA regulatory activity. MicroRNA. 2016, 5 (3), 167–174.
      https://doi.org/10.2174/2211536605666161027165915

      19. Tafrihi M., Hasheminasab E. MiRNas: biology, biogenesis, their Web-based tools, and Databases. MicroRNA. 2019, 8 (1), 4–27. https://doi.org/10.2174/2211536607666180827111633

      20. Eiring A. M., Harb J. G., Neviani P., Garton C., Oaks J. J., Spizzo R., Liu S., Schwind S., Santhanam R., Hickey C. J., Becker H., Chandler J. C., Andino R., Cortes J., Hokland P., Huettner C. S., Bhatia R., Roy D. C., Liebhaber S. A., Caligiuri M. A., Marcucci G., Garzon R., Croce C. M., Calin G. A., Perrotti D. MiR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010, 140 (5), 652–665. https://doi.org/10.1016/j.cell.2010.01.007

      21. Vasudevan S., Tong Y., Steitz J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007, V. 318, P. 1931–1934. https://doi.org/10.1126/science.1149460

      22. Zhao J., Yue D., Zhou Y., Jia L., Wang H., Guo M., Xu H., Chen Ch., Zhang J., Xu L. The role of MicroRNAs in A deposition and tau phosphorylation in Alzheimer’s disease. Front. Neurol. 2017, V. 8, P. 342. https://doi.org/10.3389/fneur.2017.00342

      23. Wang R., Wang H. B., Hao C. J., Cui Y., Han X. C. MiR-101is involved in Human breast carcinogenesis by targeting. Stathmin1. Plos One. 2012, 7 (10), e46173. https://doi.org/10.1371/journal.pone.0086319

      24. Kim J. H., Lee K. S., Lee D. K., Kim J., Kwak S. N., Ha K. S., Choe J., Won M. H., Cho B. R., Jeoung D., Lee H., Kwon Y. G., Kim Y. M. Hypoxia-responsive microRNA-101 promotes angiogenesis via heme oxygenase-1/vascular endothelial growth factor axis by targeting cullin 3. Antiox. Redox. Signal. 2014, 21 (18), 2469–2482. https://doi.org/10.1089/ars.2014.5856

      25. Liu J-J., Lin X-J., Yang X-J., Zhou L., He Sh., Zhuang Sh-M., Yang J. A novel AP-1/miR-101 regulatory feedback loop and its implication in the migration and invasion of hepatoma cells. Nucl. Acids Res. 2014, 42 (19), 12041–12051. https://doi.org/10.1093/nar/gku872

      26. Lippi G., Fernandes C. C., Ewell L. A., John D., Romoli B., Curia G., Taylor S. R., Frady E. P., Jensen A. B., Liu J. C., Chaabane M. M., Belal C., Nathanson J. L., Zoli M., Leutgeb J. K., Biagini G., Yeo G. W., Berg D. K. MicroRNA-101 regulates multiple developmental programs to constrain excitation in adult neural networks. Neuron. 2016, 92 (6), 13371351. https://doi.org/10.1016/j.neuron.2016.11.017

      27. Amakiri N., Kubosumi A., Tran J., Reddy P. H. Amyloid beta and MicroRNAs in Alzheimer’s disease. Front. Neurosci. 2019, V. 13, P. 430. https://doi.org/10.3389/fnins.2019.00430

      28. Vilardo E., Barbato C., Ciotti M., Cogoni C., Ruberti F. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J. Biol. Chem. 2010, V. 285, P. 18344–18351. https://doi.org/10.1074/jbc.M110.112664

      29. Alasmari F., Alshammari M. A., Alasmari A. F., Alanazi W. A., Alhazzani Kh. Neuroinflammatory cytokines induce Amyloid beta neurotoxicity through modulating Amyloid Precursor Protein levels/metabolism. BioMed Res. Intern. V. 2018, Article ID 3087475. https://doi.org/10.1155/2018/3087475

      30. Domingues C., da Cruz E., Silva O. A. B., Henriques A. G. Impact of cytokines and chemokines on Alzheimer’s disease neuropathological hallmarks. Curr. Alzheimer. Res. 2017, 14 (8), 870–882. https://doi.org/10.2174/1567205014666170317113606

      31. Zheng C., Zhou X. W., Wang J. Z. The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-, TGF- and IFN-. Transl. Neurodegener. 2016, V. 5, P. 7. https://doi.org/10.1186/s40035-016-0054-4

      32. Sokolik V. V., Berchenko O. G., Shulga S. M. Comparative analysis of nasal therapy with soluble and liposomal forms of curcumin on rats with Alzheimer’s disease model. J. Alzheimers Dis. Parkinsonism. 2017, V. 7, P. 357.https://doi.org/10.4172/2161-0460.1000357

      33. Sokolik V. V., Shulga S. M. Curcumin influence on the background of intrahippocampus administration of -amyloid peptide in rats. Biotechnol. acta. 2015, 8 (3), 78–88. https://doi.org/10.15407/biotech8.03.078

      34. Goure W. F., Krafft G. A., Jerecic J., Hefti F. Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res. Ther. 2015, V. 6, P. 42. https://doi.org/10.1186/alzrt272

      35. Sakono M., Zako T. Amyloid oligomers: formation and toxicity of A oligomers. FEBS J. 2010, V. 277, P. 1348–1358. https://doi.org/10.1111/j.1742-4658.2010.07568.x

      36. Sokolik V. V., Maltsev A. V. Cytokines neuroinflammatory reaction to -amyloid 1-40 action in homoaggregatic and liposomal forms in rats. Biomed. Chem. 2015, 9 (4), 220–225. https://doi.org/10.1134/S1990750815040058

      37. Sokolik V. V., Shulga S. M. Effect of curcumin liposomal form on angiotensin converting activity, cytokines and cognitive characteristics of the rats with Alzheimer’s disease model. Biotechnol. acta. 2015, 8 (6), 48–55. https://doi.org/10.15407/biotech8.06.048

      38. Hampel H., Shen Y., Walsh D. M., Aisen P., Shaw L. M., Zetterberg H., Trojanowski J. Q., Blennow K. Biological markers of amyloid beta-related mechanisms in Alzheimer’s disease. Exp. Neurol. 2010, 223 (2), 334–346. https://doi.org/10.1016/j.expneurol.2009.09.024

      39. Gu L., Guo Z. Alzheimer’s A42 and A40 peptides form interlaced amyloid fibrils. J. Neurochem. 2013, 126 (3), 305–311. https://doi.org/10.1111/jnc.12202

      40. Bures J., Petran M., Zachar J. Electrophysiological methods in biological research, Ed. 2 Publishing House. 1960, 516 p.

      41. Shulga S. M. Obtaining and characteristic of curcumin liposomal form. Biotechnol. acta. 2014, V. 7, P. 55–61. https://doi.org/10.15407/biotech7.05.055

      42. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 1951, V. 193, P. 265–275.

      43. Hébert S. S., Horré K., Nicolaï L., Papadopoulou A. S., Mandemakers W., Silahtaroglu A. N., Kauppinen S., Delacourte A., De Strooper B. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc. Natl. Acad. Sci. U. S. A. 2008, V. 105, P. 6415–6420. https://doi.org/10.1073/pnas.0710263105

      44. Nunez-Iglesias J., Liu C. C., Morgan T. E., Finch C. E., Zhou X. J. Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One. 2010, 5 (2), e8898. https://doi.org/10.1371/journal.pone.0008898

      45. Zhao Q., Luo L., Wang X., Li X. Relationship between single nucleotide polymorphisms in the 3UTR of amyloid precursor protein and risk of Alzheimer’s disease and its mechanism. Biosci. Rep. 2019, V. 39, P. 5. https://doi.org/10.1042/BSR20182485

      46. Vilardo E., Barbato C., Ciotti M., Cogoni C., Ruberti F. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J. Biol. Chem. 2010, V. 285, P. 18344–18351. https://doi.org/10.1074/jbc.M110.112664

      47. Long J. M., Lahiri D. K. MicroRNA-101 downregulates Alzheimer’s amyloid- precursor protein levels in human cell cultures and is differentially expressed. Biochem. Biophys. Res. Commun. 2011, 404 (4), 889–895. https://doi.org/10.1016/j.bbrc.2010.12.053

      48. Wojdasiewicz P., Poniatowski Ł. A., Szukiewicz D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014, V. 2014, P. 561459. https://doi.org/10.1155/2014/561459

      49. Wang C. C., Yuan J. R., Wang C. F.,Yang N., Chen J., Liu D., Song J., Feng L., Tan X. B., Jia X. B.Anti-inflammatoryeffects of Phyllanthus emblica L on benzopyreneinduced precancerous lung lesion by regulating the IL-1/miR-101/Lin28B signaling pathway. Integr. Cancer Ther. 2016, 16 (4), 505–515.https://doi.org/10.1177/1534735416659358

      50. Saika R., Sakuma H., Noto D., Yamaguchi S., Yamamura T., Miyake S. MicroRNA-101a regulates microglial morphology and inflammation. J. Neuroinf. l017, 14 (1), 109. https://doi.org/10.1186/s12974-017-0884-8

      51. Gao Y., Liu F., Fang L., Cai R, Zong C, Qi Y. Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in LPSactivated macrophages. PLoS One. 2014, 9 (5), e96741. https://doi.org/10.1371/journal.pone.0096741



Ж-л "Biotechnologia Acta" Т. 12, № 3, 2019

https://doi.org/10.15407/biotech

С. 41-49, библ. 51, англ.

УДК: 577.2:616

АНТИАМИЛОИДОГЕННОЕ ДЕЙСТВИЕ MіR-101 ПРИ ЭКСПЕРИМЕНТАЛЬНОЙ БОЛЕЗНИ АЛЬЦГЕЙМЕРА

В. Соколик1, О. Берченко1, Н. Левичева1, С. Шульга2

1ГУ «Институт неврологии, психиатрии и наркологии НАМН Украины», Харьков

2ГУ «Институт пищевой биотехнологии и геномики НАН Украины», Киев